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PHY 101: General Physics 1

Department of Physics

NEWTON’S LAWS OF MOTION
1. FORCES

A force is a mechanical effect of the environment on an object. It is either a push or a pull on an object
and has both a magnitude (in appropriate units such as newtons, dynes, or pound) and a direction.
[t can thus be represented by a vector. A force has two basic effects on an object:

1. It can change the motion of the object, which is the subject of Newton’s famous second
law.

2. It can distort the shape of an object such as by stretching, compressing, or twisting the
object.

a. Types of Forces

A force can be either due to direct contact (contact force) such as a hand pushing a block or a rope
dragging a box or due to influence from afar (action at a distance) such as the gravitational pull of
the earth on a satellite or the push of one magnet on another not in contact with it. On the human
scale there are many different forces of either type. But on the atomic scale there are only four
fundamental forces: gravitational, electromagnetic, weak nuclear, and strong nuclear—all of them
actions at a distance.

b. The Resultant of a System of Forces

The vector sum of the forces acting on an object is called the resultant force on the object. The laws
of nature are such that when two or more forces are acting at the same point in an object, they can
be replaced by their resultant acting at the same point, which will have the same exact effect on the
object as the original set of forces.

Problem 1:

In Figure 1 (a), two forces are shown acting at a point in an object. Find the magnitude and direction
of the single force that can replace those two forces and have the exact same effect.

Solution:

In the figure below, the resultant R and the replaced forces F1 and F» (in dashed form), as well as F
shifted parallel to itself so that it is tail to head with Fi. Since the two original forces are at right
angles to each other, we can use the Pythagorean theorem to obtain the magnitude of the resultant
force: R2 = F2 + F2 = (30 Ib)2 + (40 Ib)2 = 2500 lb2. Taking the square root, we obtain R = 50 1b. To get
the direction of R we determine its angle 6 with the horizontal. We have tan 6= opposite/ adjacent =
40/30 =1.33 or 8 = 53° Thus R has magnitude 50 Ib and acts at an angle 53 ° above the horizontal.
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F2=40 Ib

(@)
Figure 1
c¢. LineofAction

When a force acts at a point in an object, one can draw an imaginary line through that point and
parallel to the force. This is called the line of action of the force.

A rigid body refers to an object that doesn’t change its shape when forces act on it. No real object is
truly rigid, but the concept is a good approximation for stiff objects. In studying the relation of force
and motion we will usually assume that we have rigid bodies. While in general the effect of a force
on a rigid body depends on where it acts, a force acting on a rigid body can be applied anywhere
along its line of action and still have exactly the same effect.

Problem 2.

In figure bellow, we have the same two forces acting on a rigid body as in Figure 1 (a), but now they
are acting at different points B and C. Can one still replace these two forces by a single resultant force
that has exactly the same effect on the motion of the rigid body and, if so, give an example of such a
resultant force?

v

—
F1=301b

Figure 2
Solution:

The answer is yes. Since F1 and F, can be moved anywhere along their lines of action without
changing their effects, we can imagine moving them so that they both act at point D, the intersection
of their lines of action (Figure 2(b)). They can then be replaced by their resultant R, acting at the
same point D. As already calculated in Problem 1, R is 50 lb acting 53 ° above the horizontal.
Furthermore, this resultant force can be moved or slid anywhere along its own line of action without
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change in effect. Figure (b) shows the resultant R acting at point E, where it still has exactly the same
effect as the original two forces (shown in dashed form) that it has replaced.

2. EQUILIBRIUM

Translational motion is the motion of the object as a whole through space, without regard to how it
spins on itself. The translational motion of a very small object, idealized as a particle, is just the
motion of the particle along its path. For a large, irregular body it is less clear what is meant by the
motion of the object as a whole or the path of the object through space. Fortunately, the idea can
still be defined precisely as the motion of a special point of the object, called the center of mass.
For simple uniform symmetric objects, such as a disk, a sphere, a rod, or a rectangular solid, the
center of mass is at the geometric center of the object.

Problem 3. Describe the translational motion of the board eraser in Figure 3.
Solution

The dashed parabolic line represents the path followed by the center of mass; it thus represents
the translational motion of the eraser.

Figure 3

Rotational motion is the spinning motion of an object, without regard to the motion of the object as
a whole. Often rotational motion refers to the spinning of an object about a fixed axis, such as the
spinning of a wheel on a shaft, but it can also refer to the spinning of an object on itself as the
object as a whole moves through space.

Problem 4:
How does one describe the rotational motion of the board eraser from left to right in Figure 3?
Solution

The change in the angular orientation of the eraser represents its rotational motion. Note that the
eraser has rotated clockwise through 180 °.

Problem 5:
Describe the translational and rotational motion of the cratered moon around the planet in Fig. 4-4.
Solution

The circular dashed line represents the translational motion of the moon. This moon has no
rotational motion since its orientation does not change. The moon, in effect, stays parallel to itself
throughout the motion.

Translational equilibrium means that the object as a whole, aside from rotation, has uniform
translational motion, that is, its centre of mass is either at rest or moving at constant speed in a
straight line.
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Problem 6: Does the motion of the eraser in Figure 3 or of the moon in Figure 4 correspond to
translational equilibrium?

Solution

No. The translational motion of the eraser is a parabolic arc and that of the moon is a circle, whereas
for translational equilibrium the motion must be in a straight line. An example of approximate
translational equilibrium would be a block sliding on an ice-covered lake; the block would move in
a straight line without slowing down.

Rotational equilibrium means that the object—whether it is undergoing translational motion or
not—is either not spinning or it is spinning in a uniform fashion. For simple symmetric objects this
means spinning at a constant rate about a fixed direction.

Problem 7.

Does the motion of the eraser in Figure 3 and of the moon in Figure 4 correspond to rotational
equilibrium?

Solution

If the eraser were tumbling at a uniform rate, it would indeed be in rotational equilibrium; that, in
fact, is a good approximation to what happens if air resistance is not an important factor. The moon
is certainly in rotational equilibrium since we are shown that the moon does not rotate at all.

A Frame of Reference refers to the “framework” that defines the coordinate system in which one’s
measurements and observations are made. If a coordinate system is fixed to the earth and another
one is fixed to a rotating merry-go-round, one is going to observe things differently in each. Each of
these coordinate systems is fixed in a different frame of reference.

An inertial frame of reference, by definition, is a frame of reference in which a completely isolated
object (no forces) will appear to be in both translational and rotational equilibrium. For most
purposes the earth can be considered an inertial frame; that is only an approximation, however,
because the earth spins on its axis—although it is a very slow spin—once every 24 h. The importance
of inertial frames is that Newton’s laws hold only in such frames, and most of the other laws of
physics take on simpler form when described in such frames. We will always assume that we are
describing things in an inertial frame of reference unless otherwise indicated.

3. NEWTON'S FIRST LAW
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A totally isolated object (no forces) is in both translational and rotational equilibrium in an inertial
reference frame. However, even rigid bodies that do have forces acting on them can be in either
translational or rotational equilibrium, or both, under suitable conditions. The condition for
translational equilibrium is the statement of Newton s first law, also known as the law of equilibrium.
We give here some simple cases.

a. Equilibrium with Only Two Forces Acting

If the two forces F1 and F; (see Figure 5) are equal in magnitude and opposite in direction (that is, Fy
+ F, = 0), then the object is in translational equilibrium. If in addition the two forces act along a
common line of action (collinear forces), as in Figure 5(b), then the object is also in rotational
equilibrium.

Note. It is also possible to have rotational equilibrium without translational equilibrium, a situation
that will be discussed in a later chapter.

Problem 8:

A uniform rod is connected to two cords that exert the only forces on the rod, as depicted in Figure
6; (i.e., we assume there is no pull of gravity on the rod). For each case determine whether the rod
is in translational equilibrium. If so, can it also be in rotational equilibrium?

F;=10N

Fy=10N

(a) »)

Figure 5

30° 30°

(@) (b) (©)
Figure 6
Solution

Since the cords are flexible and exert a force only when they are taut, they can only pull along their
length, as is depicted by arrows. Case (a) cannot correspond to translational equilibrium because
the two forces are not equal and opposite (F; + F, # 0), Case (b) can correspond to translational
equilibrium, if the two forces have equal magnitude, but it cannot represent rotational equilibrium
because the two forces don’t have a common line of action. Case (c) corresponds to both translational
and rotational equilibrium if the two cords pull with forces of equal magnitude.

b. Equilibrium with Three Forces Acting

If the vector sum of the three forces is zero (F1 + F2 + F3 = 0), then the object is in translational
equilibrium. If in addition the lines of action of the three forces pass through a common point, then
the object is in rotational equilibrium as well. Such a system of forces is called concurrent.
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Problem 9. Consider the same cases as in Problem 8, except now take into account the weight of the
rod. Which of the cases can now correspond to equilibrium?

Solution

Since the rod is uniform, we can assume the weight is a single force acting downward at its center
(dotted arrows in Figure 6). Now only case (a) can correspond to translational equilibrium since
only in that case could the vector sum of the three forces add up to zero if the magnitudes were
suitable (see Problem 10). The rod would also be in rotational equilibrium, because, by symmetry,
the three forces are concurrent. In neither case (b) nor (c) could the three vector forces add up to
zero since the weight is perpendicular to the vector sum of the two other forces and could never be
balanced by them.

Problem 10. For case (a) of Problem 9, if the weight is 100 N, find the force exerted on the rod by
each of the two cords if the rod is in equilibrium (a) by geometric means; (b) by the component
method.

Solution

a. Newton’s first law tells us that the resultant of the three forces acting on the rod must be
zero. In Fig. 4-7(a) we redraw the rod as an isolated object and include only the forces acting
on it (body diagram). The condition F; + F2 + F3 = 0 implies that the three vectors, drawn
head to tail, form a closed triangle. As can be seen in Fig. 4-7(b), the triangle is equilateral for
our case, so F;=F, =F, =100 N.
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|
3
(a) (&) (©)
Figure 7
b. We now solve the problem algebraically. Choose the x axis along the rod and the y axis

perpendicular to the rod at its center. Now slide the vectors parallel to themselves to the origin, for
easier visualization Figure 7(c). Since the vector sum of the three forces equals zero, we must have
for the components.

Fix+ Fox + F3,=0 and Fy+Fz+F3=0
From Figure 7(c), we have
Fix=F; cos 30° Fx = - F; cos 30° F3x=0
F1, = F; sin 30° F3, = F> sin 30° F3,= 100N

Substituting into the x-component equation,



Lecture x_1] NEWTON’S LAWS OF MOTION Enock’s Series

F; cos 30° - Fz cos 30°+ 0=0 or Fi=F;
Similarly, the y-component equation gives.
F;sin 30° + F; sin 30°- 100=0 or 0.5F; +0.5 F=100 N
Using F; = F» in the y-component equation gives
0.5F; +0.5 F;=100 N or Fi=100 N=F;

While this method of solving a vector equation seems more cumbersome than the geometric
method, it can be applied to more general cases where die geometric approach is too difficult to
use.

c¢. Equilibrium with Any Number of Forces

For the general case of any number n of forces, we again have two conditions for equilibrium. The
first is the condition for translational equilibrium, or Newton s first law, which says that the vector
sum of all the forces is zero: ), F; = 0. For small objects or particles, where rotation can be ignored,
it is the only condition of equilibrium. For extended objects, the second condition, for rotational
equilibrium, is again needed. The general case of rotational equilibrium will be discussed in a later
chapter. The rest of this chapter is concerned only with translational equilibrium.

4. NEWTON’S THIRD LAW

This law, otherwise known as the law of action and reaction, states that if some object A exerts a force
Fap on object B, then object B exerts a force Fya 0n object A that is equal in magnitude and opposite
in direction: F,; = —F,; The law holds both for contact forces and for action-at-a-distance forces.

Problem 11. Consider a book lying at rest on a horizontal table.

(a) What are the forces on the book?

(b) What is the reaction force to each of these forces?
(©) What effect do the reaction forces have on the book?
Solution
(2) There are two forces acting on the book: its weight (the downward pull of gravity toward

the center of the earth) and the force exerted upward on the book by the tabletop.

(b) The reaction to the weight is an upward pull of equal magnitude exerted on the earth by the
book. The reaction to the table’s force is a downward push of equal magnitude on the table by the
book.

(©) The reaction forces have no effect on the book! By definition, any effect on the book is
represented by a force on the book. The reaction forces act on the earth and on the table—not on
the book.

Problem 12. An elephant and a teenager are having a tug-of-war, as shown in Fig. 4-8(a). Does
Newton'’s third law imply a draw?
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Figure 8
Solution

No. Unless the elephant is very weak, the teenager will definitely lose. It is true that the force the
elephant exerts on the teenager Fe: is equal and opposite to the force the teenager exerts on the
elephant Fe, but the motion of either “object” depends on the resultant of all the forces acting on it.
Both the teenager and the elephant are pushing the ground forward with their feet, and in each case
the ground exerts an opposite reaction force. The situation is depicted in Figure 8(b), where Fg and
Fge represent the horizontal forces exerted by the ground on the teenager and on the elephant,
respectively. Thus, for example, suppose that Fe; = Fre = 250 1b. We might have Fy = 100 1b and Fg =
650 Ib. Then a net force of 150 Ib acts on the teenager to the left, and he moves leftward. Similarly, a
net force of 400 Ib acts on the elephant to the left, and the elephant also moves leftward. The next
section deals with friction and shows why it is reasonable to assume that Fye>Fy

a. Tension

At any given point in a taut rope (or cord, string, thread, or cable) we can ask: With what force does
the segment of rope on one side of the point pull on the segment of rope on the other side? Consider
the situation in Figure 9(a), where a girl pulls on one end of a horizontal rope with a force F, while
the other end is attached to the wall. We consider an arbitrary point p of the rope that divides it into
two segments A and B, as shown. Figure 9(b) shows the segments as separate bodies, with the
horizontal forces on each drawn in. By Newton'’s third law, the forces with which the two segments
pull on each other Fap and Fya are equal in magnitude and opposite in direction. The tension T at the
point p is the magnitude of either of these forces: T= Fu» = Fpa Since each rope segment is in
equilibrium, we also have Fqp = F, and F,, = Fyq, where Fy, is the force of the wall on the rope. Thus, all
these forces have the same magnitude T Furthermore, since point p was chosen arbitrarily, we
conclude that the tension is the same everywhere in the rope.

Fw i M Fb.‘r Fab f i F

() (b}
Figure 9
b. “Weightless” Ropes

In general, these results are true only for a horizontal rope in equilibrium. If the rope were vertical,
with one end attached to the ceiling and the other end pulled down by the girl, then the weight of
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each segment of the rope would have to be taken into account, and the tension at a point p of the
rope would equal neither the force with which the girl pulled down nor the force with which the
ceiling pulled up. Indeed, the tension would vary from point to point in the rope. The same would be
true if we had a horizontal rope that was not in equilibrium, because the forces applied to either end
would not balance out.

There is, however, one circumstance where there is a common tension throughout the rope, and this
tension always equals the magnitude of the forces acting at the ends of the rope—whether the rope
is horizontal or vertical, whether the rope is in equilibrium or not. This is the circumstance where
the rope is weightless. In most problems one characterizes such a rope as a cord, string, or thread to
indicate its “lightness.” Obviously, no cord is completely weightless, but if it is very light in
comparison to the other objects in the problem, it can be assumed weightless without much error.

Problem 13. A block of weight w = 15 N hangs at the end of a (weightless) cord suspended from the
ceiling. What is the tension in the cord, and with what force does the cord pull down on the ceiling?

Solution

The tension is the same at all points of the cord and is equal to the magnitude of the force pulling at
either end. Since the block is in equilibrium under the action of two vertical forces (the weight
downward and the pull of the cord upward), these two forces must have the same magnitude. Hence
the upward pull of the cord = 15 N. By Newton’s third law the magnitude of the pull of the block
downward on the cord is also 15 N, so T- w = 15 N. The tension T also equals the magnitude of the
pull of the ceiling on the cord, which by Newton'’s third law equals the pull of the cord downward on
the ceiling. Thus, the downward pull of the top of the cord on the ceiling is the same as the downward
pull of the block on the bottom of the cord. Thus, we see that a weightless rope transmits an applied
force from one end to the other.

5. FRICTION

Friction is the rubbing force between two objects whose surfaces are in contact. The force of friction
always acts parallel to the touching surfaces. By Newton’s third law each surface exerts a frictional
force thatis equal in magnitude and opposite in direction to that exerted by the other. The magnitude
of the frictional force exerted by each surface on the other depends on how tightly the two surfaces
are pressed together.

a. Normal Force

The force responsible for this “pressing together” is called the normal force because it acts
perpendicular to the two surfaces. By Newton'’s third law each surface exerts a normal force that is
equal in magnitude and opposite in direction to that exerted by the other. Figure 4-10 indicates the
frictional and normal force on each object when a block is in contact with an inclined plane. The
frictional force (parallel to the surface) and the normal force (perpendicular to the surface) acting
on a surface can always be thought of as the components of the overall force acting on that surface
due to the other surface in contact with it.

b. Static Friction

When two surfaces are at rest with respect to one another, the frictional force each exerts on the
other always opposes any tendency to relative motion. The frictional force on an object adjusts itself
in magnitude and direction to oppose and counterbalance any other forces on the object that would
tend to make the object start to slide. It varies, as needed, from zero magnitude up to some maximum
value to stop such slippage. Such a frictional force is called a static friction force (f;). The maximum
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Friction

Figure 10

static friction force f;mq that one surface can exert on another is proportional to the normal force N

between the surfaces: f; 4 = usN, where N is the magnitude of the normal force, and n; is a
proportionally constant, called the coefficient of static friction, that depends on the nature of the
two surfaces. It is possible to force one object to slide over the other by applying a parallel force to
one of the objects that is larger than (usN, the maximum possible static friction force.

Problem 14: A book of weight w =10 N rests on a horizontal tabletop, as shown in Figure 11(a), and
a horizontal force F is applied to it. If the coefficient of static friction y;N between the book and the
tabletop is 0.25, calculate (a) the normal force exerted by the tabletop on the book, and (b) the
maximum value of the static friction force.

F
. ot
f"
[ | i
w N
- -
(a) (b)
Figure 11
Solution
(a) Since the book is in equilibrium, the sum of the forces acting on it must equal zero. Figure

11(b) shows the body diagram for the book with all the forces acting on it. The frictional force is f§,
and the normal force is N. Noting that f; and F have no y components, from the condition that the
sum of the y components equals zero we have N — 10N = 0, or N = 10N.

(b) The maximum value attainable by the static friction force is.
fsmax = usN = (0.25) (10N) = 2.5N
Problem 15.

(2) In Problem 14, if the magnitude of the applied force is F = 2.0N, what is the magnitude and
direction of the frictional force on the book?

()  Whatif F = 1.0N; ON?



Lecture x_1] NEWTON’S LAWS OF MOTION Enock’s Series

©] What is the biggest value that F can be before the book starts to slide?
Solution

(2) The frictional force opposes the tendency to motion, so it is in the direction opposite to F, as
shown in Figure 11(b). The magnitude of the frictional force adjusts itself to keep the book at rest,
which in this case means f; = F = 2.0 N. This value is possible, since it is smaller than the maximum
found in Problem 14(b).

(b) If F = 1.0 N, then, by the same reasoning as in part (a), we have f; = 1.0 N in the direction
opposite to F.If F = 0, then f; = 0, and there is no frictional force at all.

(©) If F is bigger than f; 4, then the frictional force cannot rise to match F and maintain
equilibrium. Thus F = 2.5N is the limiting value; beyond this value equilibrium cannot be
maintained, and the book starts to move.

c¢. Kinetic Friction

Once two surfaces are in motion relative to one another, the frictional force, now called kinetic
friction (f), acting on a surface is always in a direction opposed to the velocity of that surface. To a
good approximation, its magnitude is independent of the magnitude of the velocity and is again
proportional to the normal force between the two surfaces. Thus, it can be expressed as f;, = yN,
where u;, the coefficient of Kinetic friction, depends only on the nature of the two surfaces. For
any given pair of surfaces, p; > ;.

Problem 16. Assume the book in Figure 11(a) is moving to the right with speed v.

(2) Now what are the magnitude and direction of the force of friction exerted by the tabletop
on the book?

(b) Does fi depend on the magnitude of the applied force F?

(©) If the book instead moves to the left with speed v, with F still to the right, what are the
magnitude and direction of the force of friction? Assume that y; = 0.2.

Solution

(2) Once the book is moving the (kinetic) friction is of fixed magnitude, f; = pN. Since we still
have equilibrium in, they direction, we still have the same normal force; Thus fi = (0.2) (10 N) = 2.0
N. The direction of the kinetic friction force is always opposite to the direction of motion, so it would
be to the left.

()  No.

©] Since the normal force is still the same, the value off is still 2.0 N. The direction of f* is now
to the right. Note that the direction of f* depends only on the direction of motion and not on the
direction of F.

6. CORDS AND PULLEYS

If a (weightless) cord is bent over a pulley, as in Figure 12, there are two idealized situations in which
the tension in the part of the cord on one side of the pulley will be the same as the tension in the part
of the cord on the other side of the pulley.



Lecture x_1] NEWTON’S LAWS OF MOTION Enock’s Series

®
(a) . (b) (©)
Figure 12
1. The surface of the pulley is frictionless so that the cord slides effortlessly over it (frictionless
pulley).
2. The surface of the pulley has friction, but the pulley has no weight and there is no friction

between the pulley and the axle on which it rotates (weightless pulley).

In a problem, being told that the pulley is frictionless and/or weightless (massless) is generally
shorthand for case 1 or case 2, and you can assume as much unless told otherwise.

Problem 17: In Figure 13(a), the two blocks are connected by a light rope over a frictionless,
weightless pulley. If the system is initially at rest, will it stay at rest? If so, what is the frictional force
exerted by the table on block A7

Solution

Figure 4-13(b) gives the body diagrams for the two blocks. For block B, assuming equilibrium, the *-
component equation gives T — W, = 0 or T = W, = 10 N. Since we have a rope and a frictionless,
weightless pulley, the tension is the same on the blocks side of the pulley, and T=10N for block 4 as
well.

Vertical equilibrium of block A requires that N—W,=0, or N=W,=30N. Then the maximum possible
static frictional force is

fs,max = u,N(0.5) (30N) = 15N

Since T<fsmax the frictional force can balance T and the system remains at rest. The actual frictional
force can be obtained from the equilibrium of block A:

T—fi—0 or  fi=T=10N
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p=05 W,=30N o

W,= 10N

(@) )
Figure 13
Problem 18: Find the resultant R of the two forces shown in Figure 14.
Solution

R=F; + F2. We choose x and y axes as shown in the figure and use the component method of
addition.

F,=0 Fi, =20N  Fy = —(60N) cos37° Fy, = —(60N)sin 37°
R, = Fy + Fp, = 0 — (60N)(0.8) = —48N
Ry = Fyy, + F,, = (20N) — (60N)(0.6) = —16N

1
2

R = [(—48)? + (-16)?]2 = 50.6N

From the signs of its components, R is in the third quadrant. If 6 is the acute angle that R makes
with the negative x axis,

By

Ry

=1e_1 or 0 =184°

tan@ = =—=
48 3

Thus, R has magnitude 50.6 N and points away from the origin at 18.4° below the negative x axis.

Problem 19. Three forces act on a rigid body, as shown in Figure 15, with their lines of action passing
through the common point B. Find their resultant and its point of application for equilibrium.

Solution
R = F{ + F, + F3. Choose the x and y axes as shown. Then
R, = Fy + F5, + F3, = (=50 N)cos30 ° + (40N)cos45° + (ON)
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= (=50N)(0.866) + (40N)(0.707) = —15.0N
R, = Fyy, + Fyy, + F3,, = (50N)sin30° + (40N)sin 45 ° + (—30N)

= (50N) (0.5) + (40N) (0.707) + (—30N) = 23.3N

R = [(—15)2+(23.3)2]% = 277N

R is in the second quadrant, with

By

Ry

_ 233

tanf = =——
15.0

or 60 = 57.2 ° above the negative x axis

R can act anywhere along a line of action through B.

Fy=30N Fa=40K
Figure 15
Problem 20: Refer to Problem 18.
(a) What third force E, must be exerted on the body for it to be in translational equilibrium?
(b) Where must E be applied to give rotational equilibrium as well?
Solution

(a) For translational equilibrium, F;{ + F + E = 0,0or E = —(F; + F,) = —R.Hence E =
50.6 N, and E points 18.4° above the positive x axis (see Figure 16).

(b) E must have the same line of action as R; that is, its line of action must also pass-through
point A.

Note. The force which, when added to an existing set of forces on an object, will cause the object to
be in equilibrium is called the equilibrant of the set. (The force E in the previous problem is thus an
equilibrant.)

E=506N

18.4°

18.4°

R=506N

L}

Figure 16
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Problem 21. Find the equilibrant of the forces in Problem19.
Solution

Here we have the concurrent forces Fy, Fz, and F3 which can be replaced by the single resultant force
R = F1 + F2 + F3 with line of action through point B, as obtained in Problem 19. Clearly, to have
equilibrium, the added fourth force, the equilibrant E, must obey E = —R. Thus E = 27.7 N pointing
57.2° below the positive x axis, with a line of action that must also pass through point B.

Problem 4.22. A block of weight =400 N hangs from a uniform heavy rope of length 3 m and weight
wz =300 N, as shown in Figure 17(a). Find (a) the force with which the rope pulls on the block; (b)
the tension in the rope 1 m above the contact point with the block; (c) the force with which the ceiling
pulls on the rope.

Solution

In Figure 17(b) we have the body diagrams for the block, the lower third of the rope, and the full
rope, respectively. Each is in equilibrium, and the vector sum of the forces on each equal zero. Since
the forces are all in the y direction, only the equilibrium condition in that direction need be applied.

3m wy, = 300N

Wy

w; = 400N

Tl’
(a) (b)
Figure 17
(a) For the block, T; —w; = 0, or T; = 400 N equals the force of the rope on the block.

(b) For the lower third of the rope, T, — T{ — w' = 0, where T is the contact force of the upper
two- thirds of the rope on the lower third and is the tension in the rope at that point; 7/ is the force
of the block on the rope, given by Newton’s third law as T{ = T; = 400 N; w'is the weight of the
lower third of the rope, or w’ = 100N' Thus = 400 N + 100 N = 500 N.

() For the rope as a whole,T; — T{ —w, = 0,0or T3 = T{ + w, = 400N + 300 N = 700 N,
equals the force of the ceiling on the rope.

Problem 23: For the weight-and-strings setup of Fig.18(a), find the tensions T; T, and Ts.
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Solution

From the equilibrium of the block, T1= 600 N. Since the knot is in equilibrium, the body diagram,
Figure18(b), gives T1 + T2 + T3 = 0. Using the component method, we get

Tix + T2 T3, =0—T,c0s60°+ T,sin50°=0or 0.5T, =0.766Tz0or T,=1.532Ts.

(A sine appears in the x-component equation because the angle of Ts is given relative to the
y axis). Similarly,

Ty + Ty, + T3y = —T1 + Tsin60° + T3 c0s50°=0  or 0.866T, + 0.643T; = 600N.
Substituting for Tz,

(0.866) (1.532T3) + 0.643T; = 600N or 1.97073 = 600N or T; = 305N
Finally, T> = 1.532T3 = 467 N.

Problem 24: A block of weight w =200 N is pulled along a horizontal surface at constant speed by a
force F =.80 N acting at an angle of 30° above the horizontal, as shown in Figure19.

F=80N
/gr
- .
fi
N
t
w =200 N
Figurel9
(2) Find the frictional force f exerted on the block by the surface.
(b) Find the normal force N exerted on the block by the surface.
(¢ Find the coefficient of kinetic friction, fir, between the block and the surface.

Solution
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(a) The four vector forces acting on the block are shown in Fig. 4-19. Since the block is in equilibrium;
their sum equals zero. For the x components we thus have

Fcos300-f;=0 or fi=(80N) (0.866) =69.3 N
(b) Similarly, for the y components,
F sin30°+N - w =0 or N = 200N - (80N) (0.5) = 160N

Note that the normal force is not equal to the weight even though the block is on a horizontal surface,
because the force F has a vertical component.

(c) we = fr/N = 69.3/160 = 0.433.

Problem 25: A hanging weight wy is connected by a light cord over a frictionless pulley to a block
on a frictionless incline of weight w;=500N, as shown in Figure 20. If the block on the incline moves
down at constant speed, what is the weight of the hanging block? How would your answer change if
it were moving up the incline at constant speed?

Figure 20
Solution

In Figure20, all the forces on the respective blocks are shown right on the diagram for the system as
a whole. Since both blocks move in straight lines at constant speed, they are each in equilibrium. For
the hanging block, using y components, we have T; — w; = 0, or w;=T1. To find T; we turn to the block
on the incline. We choose x and y axes along the incline and perpendicular to it, respectively. We also
note that the force of the cord on each block has the same magnitude, so T.-T=T, since the cord is
light, and the pulley is frictionless. Then, for the x-component equilibrium equation we get

T —wysinf =0 or T = (500 N) (sin37°) = 300N

Then from our earlier result w; = T = 300 N. Note that we did not need to solve the y-component
equilibrium equation for the block on the incline to solve for T and w; This is because the y-
component equation gives us the normal force N., which does not affect the x-component equation
when there is no friction. If the block were moving up the incline, the blocks would still be in
equilibrium under the action of the same forces, so the answer would remain the same.

Problem 26. Suppose that in Problem 25 there was friction between the block and the incline, and
that the coefficient of sliding friction was pu; = 0.3, but all the other data in the problem remained
unchanged. Find the weight of the hanging block, w; if the other block moves at constant speed
(a)down the incline; (b) up the incline.

Solution
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(a) We can use Figure 20 with the modification that there is an additional force on the block on
the incline, a frictional force of magnitude fi opposing the motion of the block and hence pointing
parallel to the incline in the upward direction. From the rules for friction, we have f;, = y, N, where
N is the normal force exerted on the block by the incline. Following the reasoning of Problem 25 we
now have for the x components.

T +uN — wysin37° = 0 or T = (500N) (0.6) — 0.3N
For the y components
N — wyc0s37° = 0 or N = (500N) (0.8) = 400N
Substituting into the previous equation we have
T = (500N) (0.6) — 0.3(400N) = 300N — 120 N = 180N
Since the hanging block obeys w;= T, we have our result, w;=180N.

(b) If the block is moving up the incline at constant speed, we proceed as before, noting that the
frictional force is now directed down the incline although it still has the same magnitude f;, = pN.
Furthermore, the y-component equation for the block on the incline is unchanged, so we still have N
=400 N and fx = 0.3(400 N) = 120 N. The x-component equation changes only in that the sign of the
x-component of the frictional force changes, and we get.

T—uN—wysin37°=0 and T = 300N + 120N = 420N
Finally, w;, =T =420 N

Problem 27. For the setup in Figure18(a)—first discussed in Problem 23—the breaking point of the
two cords attached to the wall mid ceiling is 1500 N. How heavy can the block be without one of the
cords snapping? Assume the cord attached to the block can handle any weight.

Solution

We first determine which of the two cords will reach a tension of 1500 N first. To do this we recall
from Problem 23 that equilibrium in the x direction requires.

T3 sin 50° = T cos 60° or 0.766T3=0.50T; or T3 — 0.653T, < T

Clearly T3 is always less than T, and hence T> will reach 1500N first. We now set T> = 1500 N; from
above, this immediately yields T3 = 0.653 (1500 N) = 980 N. We can now determine the
corresponding weight w of the block using the equilibrium equation in the y direction:

w =T, =T,sin60°+ T; cos 50° = (1500N)(0.866) + (980N)(0.643) = 1929N

7. NEWTON’S SECOND LAW OF MOTION

Newton's second law of motion states that the acceleration of an object is directly proportional to
the net force acting on it and inversely proportional to its mass. Mathematically, it is expressed as:

F=ma
Where:
F is the net force acting on the object (in newtons, N),

m is the mass of the object (in kilograms, kg),
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a is the acceleration of the object (in meters per second squared, ms™1).
a. Resultant force and acceleration

Earlier it was found that if the vector sum of the forces on an object-the resultant force-is
zero, then the object is in translational equilibrium, i.e., it has constant velocity, or, equivalently,
zero acceleration. Ifthe resultant force is not zero, then we should expect that the acceleration
also would not be zero. Indeed, we should say that the unbalanced force <Yn the object caused its
acceleration. Newton's second law is the quantitative statement of this cause-and-effect
relationship.

i. Experimental Facts and the Formulation of Newton Second Law

When a nonzero resultant force F acts on a given object, the consequent acceleration a
always points in the direction of F.Also, for a given magnitude of F,the magnitude of a is the same
no matter what the direction of the force. On the other hand, if the magnitude of F doubles, the
magnitude of a doubles; if the magnitude of F triples, the magnitude of a triples; etc. Thus, the
magnitude of a is proportional to the magnitude of F,or F o a. The proportionality constant is
called the mass m of the object, and we write F =ma, where m is generally different for different
objects. Since m is a scalar quantity, we can combine the results for the magnitude and the
direction of the acceleration in the single equation.

F = ma

This equation is the mathematical statement of Newton's second law. In Figure 21 (a) and
(b), we show different resultant forces having the same magnitude acting on (a) the same
object and
(b) different objects, and the resulting accelerations of those objects.

Fl F‘| F

Al . A li‘2 A
1 PamiN
A1y ny / l'\. A)

. a
a,\ Fy o
Fi=F' = a=qa/ Fi=Fy, = ada;, = mim, Fla=M=m+m,
{a) (b (e
Figure 21

ii. The Meaning of Mass

As can be seen in Figure 21 the mass controls the response of the object to a given magnitude
force: A small mass means a large acceleration, a large mass means a small acceleration.
Because mass measures the resistance of an object to having its velocity changed ("being
shoved around"), it is often referred to as the inertia of the object. The relative magnitude
of different masses can easily be established by applying the same magnitude force to the
different objects and measuring their accelerations. Then

mq az
m1a1 = mzaz or _— =
my a,
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The mass is clearly an intrinsic property of an object, but for it to be a truly fundamental
property of all matter one needs to show that objects maintain this property even when
they are combined with other objects. Figure 5-1(c) shows a resultant force being applied
to two objects stuck together. The resulting acceleration is just what one expects if the
mass of the combination is M =m; + m,. The mass is thus an indestructible and
unchanging property of any object that stays with the object even when it is combined into
larger units. In the same way, when an object is broken into smaller parts, the sum of the
masses of the parts equals the original mass.

iii. Unitsof Force and Mass

In the International System (SI) units, the unit of force is already determined for us from
Newton's second law once we have a unit of mass and a unit of acceleration. The unit of
mass is the kilogram, and the unit of acceleration is the meter per second squared. The
corresponding unit of force is the Newton (N), and from F = ma we have

1N = (1kg)(1ms~2) = 1kg.ms™2

In other words, a 1-N force gives a 1-kg mass an acceleration of 1m/52. If one chooses the
gram as the unit of mass and the centimetre per second squared as the unit of acceleration,
then the unit of force is called the dyne. Again, from F = ma

ldyn=(1g)(1cms™?)=1g.cms™?

Problem 5.1: How many dynes are there in a newton?
Solution

1N =1kgm/s2 = (1000 g)(100 cm)/sz = 100,000 g cm/sz = 105 dyn

Problem 28. What is the magnitude and direction of the acceleration of an object whose
mass is 10 kg when it is acted on by a resultant force of 380 N at 30 °above the positive
X axis?

Solution

The direction is the same as that of the resultant force, 30° above the positive x axis. For
the magnitude F = ma gives
F 380N _ 38kgms™?
“m 10kg *g = kg

=38ms~2

Problem 29. A constant force acts on a 30-g object and produces an acceleration of
2m/s? Find the force in dynes.

Solution

We are given mixed units, so we first convert the acceleration to the gram-centimeter-second
system: a = 2 m/s? = 200 cm/s?. Then F = ma gives

F=(30g) (200 cm/s2) =6000 dyn

iv. TheEnglish System and Weight

In the English system of units, it is the unit of force, the pound (lb), that is fundamental, rather than
the mass. One pound (1 1b) is defined as the pull of gravity on an object whose mass is 0.45359
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kg at a specified latitude of the earth's surface. (The pull of gravity on an object is commonly
called its weight.) The corresponding unit of mass is now defined using the second law, F =ma

mass of 1 slug is that thass which when acted on by a force of 11b accelerates at 1 ft/sz, or

1 slug = (I Ib)/(1 ft/s> .

To convert from pounds to newtons we have to discuss the nature of weight. Ifan object near the
earth's surface is acted on only by the force of gravity, it will accelerate with the acceleration

g=9.8 m/sz. Calling the force of gravity, or weight, w, the second law gives w = mg. Since g is the
same for all objects, w/m = g is constant. Thus, weight and mass are proportional at a given point
on the earth's surface. As one changes position on the earth's surface, both w and g vary slightly,
but m stays constant. This will be discussed in more detail when we discuss the law of universal
gravitation. We can now determine the conversion from the English to the metric system. From its
definition: 1 1b = (0.45359 kg)(9.8 m/s?) = 4.445N.The mass 0.45359 kg is given a special name
and called 1 pound-mass (i.e., the mass that weighs 11b). Since a force of 11b gives 1 Ib-mass an
acceleration g = 9.8 m/s?2= 32.2 ft/s?, while it gives 1 slug an acceleration of only 1 ft/s? it
follows that 1 slug = 32.2 Ib-mass = 32.2 (0.45359 kg) = 14.7 kg.

Problem 29 What is the weight w, in pounds, of a 1-kg mass?
Solution

We can first get w in newtons. w = (1 kg)(9.8 m/sz) = 9.8 N. Dividing by 4.445 N/lb we
get w=(9.8.N)/(4.445 N/1lb) = 2.20 lb. We could also get the result directly from the fact that
0.45359 kg weighs 1 1b, and therefore 1 kg weighs 1/0.45359 = 2.20 times as much.

Problem 3 0: A resultant force of 50 Ib acts on an object weighing 12 lb. Find the acceleration.

Solution
The mass of the object ism = % =(121b)/(32.2 ft/s?) = 0.373 slug. Then

50 Ib = (0.373 slug)a or a=134ft/s?

8. APPLICATIONS OF THE SECOND LAW

Whenever applying the second law it is essential to clearly identify the object being accelerated
and to be sure that the force appearing in the equation is the resultant of all forces acting on the
object. Also, because F = ma as a vector equation, it may be useful to resolve it into
components along convenient x and y axes.

a. Forces on a Single Object

Problem 5.6. A constant force T pulls horizontally on a block of mass m = 2.0 kg, which is free
to move on a frictionless horizontal surface, as shown in Figure 22(a). Starting from rest,
the block is observed to move 20.0 m in 2.0 s. Find T.
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Solution

We first draw a body diagram for the block, with all forces on the block drawn in, as shown in
Figure 22(b). Also shown is the acceleration a. Since the acceleration is along the x direction
(the block stays on the table), we have ax = a and a, = 0. For the x direction we have Fx = max.
Since Tis the only force with an x component, and it points in the x direction, we have T = ma
or T= (2.0 kg)a. Since T is constant, we know that a is constant, and we can use the kinematic
equations for constant acceleration, together with the kinematic information given. Since the
block starts from rest, we can set xy = vy, = 0. We then have x = (1/2)at? which for our case
yields 20.0 m = a (2.0s)?2 ora = 10.0 m/s2. Then

T=(2.0kg) (10.0 m/s2) =20.0N

Problem 31. Redo Problem 30, if there is now friction between the block and tabletop and
the coefficient of kinetic friction is uk = 0.3.

Solution

The body diagram in Figure 22 remains the same except that there is one additional force fx
in the negative x direction. Since fx = uxN, we need to find the normal force N. Considering the y
direction we have (since a, = 0) N =mg = 19.6 N. The x equation is now T- fx = ma or T-uk
N=ma. Substituting in the known values, we get

T —0.3(19.6 N) = (2.0 kg)(10.0 m/s?) or T = 25.88N

Problem 32. A block of mass m = 5.0 kg slides from rest on a horizontal frictionless surface
under the action of a force of 60 N in a direction 40 °above the positive x axis. How fast is the
block moving at the end of 6 s?

Solution

The situation is depicted in Figure 23, where, instead of having a separate body diagram, all
the forces acting on the block are directly drawn in. Only the x motion is of interest, and F, =
ma, yields

(60 N) cos 40° = (5.0 kg)a or a = 92m?

Since we are starting from rest we have Vy=at =(9.2 m/s?)(6 s) = 55.2 m/s
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Figure 23

Problem 33. A block of mass m = 12 kg slides down a frictionless inclined plane of
angle 50°. What is the acceleration?

Solution

The situation is shown in Figure 24. Since we know the motion ofthe block will be down the incline,
we choose our x axis down along the incline. Since there is no friction, the only force with a
component along the incline is the weight w = mg. Then

mgsin 50° = maor a = gsin50° = (9.8 ms~2) (0.766) = 7.51ms~2

Note.: The acceleration is independent of the mass, just as for the case of freely falling
objects. Indeed, if the angle of the incline is any angle ¢ the accelerationis a = gsiné.

Figure 24

Problem 34. Suppose that in Problem 3 3 there is friction, with pk = 0.2. Find the acceleration.

Solution

A frictional forcefi = N, acting up the incline (in the negative x direction), must be added to the
forces already shown in Figure 24. Since we have equilibrium along the y axis,

N =mgcos50° and f, = p,mg cos 50°
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Then, for the x motion, mg sin 50°- wmg 50°= ma. Dividing out the mass we obtain
a =gsin50° — g cos 50 °=g(sin 50 ° — uk cos 50 °)
=(9.8m/s2) (0.766-0.2 0.643) =6.25m/s?
Problem 35. A child weighing 80 Ib stands on a bathroom scale in an elevator. Find his "effective

weight" as read on the scale, if the elevator is (a) moving downward at constant speed; (b)

moving upward at constant speed; (c) accelerating upward at 8.0 ft/s? (d) accelerating upward
at 32 ft/s?; (e) accelerating downward at 8.0 ft/s?; (f)accelerating downward at 32 ft/s2.

Solution

The child is under the action of two forces, the weight w = mg downward and the normal force N of
the scale upward. (The bathroom scale reads the value of N, which is what we call the "effective
weight".) We choose our positive direction upward.

(a), (b). Inthese two cases the acceleration is zero, so the child is in equilibrium, and we must
have N = mg = 80 lb, the true weight.

(c). Now N —mg =ma or

40
N=m(g+a) = (w/g)(g+a)=w(g+a)/g = (80 b)(32 + 8)/32 = (80 Ib) (ﬁ)
— 100 Ib.

Note. This "effective weight" is not just a mathematical result. The child will actually feel
heavier. Just as the scale pushes up with a force greater than the weight to give the entire child
anupward acceleration, so too the lower half of the child must push up on the upper half with
a greater than usual force to give that half its acceleration. Indeed, each part of the body must
exert a proportionately greater force on every other part, hence the feeling of weighing more.

(d) Westill have N = w(g +a)/g,butnowa =32 ft/s2 Therefore N= (80 lb)(64/32)= 160 1b,
or double the weight.

(e) Now a=-8m/s?, and N = (80lb)m) = 60 Ib.

(f) Now a =-32 ft/s2 andg +a=0,soN=0.

Note. The answer to part (f) is not surprising because the child is accelerating downward with the
acceleration of gravity, which is called "free fall." The child in fact feels weightless since no forces
other than gravity can be acting on any given part of his body. Thus, the usual forces exerted by
different parts of the body on each other are not there, and it feels strange. A satellite moving
around the earth is also in free fall, which is why the astronauts inside feel weightless.



