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PHY 101: General Physics 1 

Department of Physics 

NEWTON’S LAWS OF MOTION 

1. FORCES 

A force is a mechanical effect of the environment on an object. It is either a push or a pull on an object 

and has both a magnitude (in appropriate units such as newtons, dynes, or pound) and a direction. 

It can thus be represented by a vector. A force has two basic effects on an object: 

1. It can change the motion of the object, which is the subject of Newton’s famous second 

law. 

2. It can distort the shape of an object such as by stretching, compressing, or twisting the 

object. 

 

a. Types of Forces 

A force can be either due to direct contact (contact force) such as a hand pushing a block or a rope 

dragging a box or due to influence from afar (action at a distance) such as the gravitational pull of 

the earth on a satellite or the push of one magnet on another not in contact with it. On the human 

scale there are many different forces of either type. But on the atomic scale there are only four 

fundamental forces: gravitational, electromagnetic, weak nuclear, and strong nuclear—all of them 

actions at a distance. 

b. The Resultant of a System of Forces 

The vector sum of the forces acting on an object is called the resultant force on the object. The laws 

of nature are such that when two or more forces are acting at the same point in an object, they can 

be replaced by their resultant acting at the same point, which will have the same exact effect on the 

object as the original set of forces. 

Problem 1: 

In Figure 1 (a), two forces are shown acting at a point in an object. Find the magnitude and direction 

of the single force that can replace those two forces and have the exact same effect. 

Solution: 

In the figure below, the resultant R and the replaced forces F1 and F2 (in dashed form), as well as F2 

shifted parallel to itself so that it is tail to head with F1. Since the two original forces are at right 

angles to each other, we can use the Pythagorean theorem to obtain the magnitude of the resultant 

force: R2 = F2 + F2 = (30 lb)2 + (40 lb)2 = 2500 lb2. Taking the square root, we obtain R = 50 lb. To get 
the direction of R we determine its angle 6 with the horizontal. We have tan 𝜃= opposite/ adjacent = 

40/30 = 1.33 or 𝜃 = 53°  Thus R has magnitude 50 lb and acts at an angle 53 ° above the horizontal. 



Lecture x_1] NEWTON’S LAWS OF MOTION Enock’s Series 

 

 

      

Figure 1 

c. Line of Action 

When a force acts at a point in an object, one can draw an imaginary line through that point and 

parallel to the force. This is called the line of action of the force. 

A rigid body refers to an object that doesn’t change its shape when forces act on it. No real object is 

truly rigid, but the concept is a good approximation for stiff objects. In studying the relation of force 

and motion we will usually assume that we have rigid bodies. While in general the effect of a force 
on a rigid body depends on where it acts, a force acting on a rigid body can be applied anywhere 

along its line of action and still have exactly the same effect. 

Problem 2.  

In figure bellow, we have the same two forces acting on a rigid body as in Figure 1 (a), but now they 

are acting at different points B and C. Can one still replace these two forces by a single resultant force 

that has exactly the same effect on the motion of the rigid body and, if so, give an example of such a 

resultant force? 

 

Figure 2 

Solution: 

The answer is yes. Since F1 and F2 can be moved anywhere along their lines of action without 
changing their effects, we can imagine moving them so that they both act at point D, the intersection 

of their lines of action (Figure 2(b)). They can then be replaced by their resultant R, acting at the 

same point D. As already calculated in Problem 1, R is 50 lb acting 53 ° above the horizontal. 

Furthermore, this resultant force can be moved or slid anywhere along its own line of action without 
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change in effect. Figure (b) shows the resultant R acting at point E, where it still has exactly the same 

effect as the original two forces (shown in dashed form) that it has replaced. 

 

2. EQUILIBRIUM 

Translational motion is the motion of the object as a whole through space, without regard to how it 

spins on itself. The translational motion of a very small object, idealized as a particle, is just the 

motion of the particle along its path. For a large, irregular body it is less clear what is meant by the 
motion of the object as a whole or the path of the object through space. Fortunately, the idea can 

still be defined precisely as the motion of a special point of the object, called the center of mass. 

For simple uniform symmetric objects, such as a disk, a sphere, a rod, or a rectangular solid, the 

center of mass is at the geometric center of the object. 

Problem 3. Describe the translational motion of the board eraser in Figure 3. 

Solution 

The dashed parabolic line represents the path followed by the center of mass; it thus represents 

the translational motion of the eraser. 

 

Figure 3 

Rotational motion is the spinning motion of an object, without regard to the motion of the object as 

a whole. Often rotational motion refers to the spinning of an object about a fixed axis, such as the 

spinning of a wheel on a shaft, but it can also refer to the spinning of an object on itself as the 

object as a whole moves through space. 

Problem 4: 

How does one describe the rotational motion of the board eraser from left to right in Figure 3? 

Solution 

The change in the angular orientation of the eraser represents its rotational motion. Note that the 

eraser has rotated clockwise through 180 °. 

Problem 5: 

Describe the translational and rotational motion of the cratered moon around the planet in Fig. 4-4. 

Solution 

The circular dashed line represents the translational motion of the moon. This moon has no 

rotational motion since its orientation does not change. The moon, in effect, stays parallel to itself 

throughout the motion. 

Translational equilibrium means that the object as a whole, aside from rotation, has uniform 

translational motion, that is, its centre of mass is either at rest or moving at constant speed in a 

straight line. 
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Figure 4 

Problem 6: Does the motion of the eraser in Figure 3 or of the moon in Figure 4 correspond to 

translational equilibrium? 

Solution 

No. The translational motion of the eraser is a parabolic arc and that of the moon is a circle, whereas 

for translational equilibrium the motion must be in a straight line. An example of approximate 

translational equilibrium would be a block sliding on an ice-covered lake; the block would move in 

a straight line without slowing down. 

Rotational equilibrium means that the object—whether it is undergoing translational motion or 

not—is either not spinning or it is spinning in a uniform fashion. For simple symmetric objects this 

means spinning at a constant rate about a fixed direction. 

Problem 7. 

Does the motion of the eraser in Figure 3 and of the moon in Figure 4 correspond to rotational 

equilibrium? 

Solution 

If the eraser were tumbling at a uniform rate, it would indeed be in rotational equilibrium; that, in 

fact, is a good approximation to what happens if air resistance is not an important factor. The moon 

is certainly in rotational equilibrium since we are shown that the moon does not rotate at all. 

A Frame of Reference refers to the “framework” that defines the coordinate system in which one’s 

measurements and observations are made. If a coordinate system is fixed to the earth and another 

one is fixed to a rotating merry-go-round, one is going to observe things differently in each. Each of 

these coordinate systems is fixed in a different frame of reference. 

An inertial frame of reference, by definition, is a frame of reference in which a completely isolated 

object (no forces) will appear to be in both translational and rotational equilibrium. For most 

purposes the earth can be considered an inertial frame; that is only an approximation, however, 

because the earth spins on its axis—although it is a very slow spin—once every 24 h. The importance 

of inertial frames is that Newton’s laws hold only in such frames, and most of the other laws of 

physics take on simpler form when described in such frames. We will always assume that we are 

describing things in an inertial frame of reference unless otherwise indicated. 

 

3. NEWTON’S FIRST LAW 
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A totally isolated object (no forces) is in both translational and rotational equilibrium in an inertial 

reference frame. However, even rigid bodies that do have forces acting on them can be in either 

translational or rotational equilibrium, or both, under suitable conditions. The condition for 

translational equilibrium is the statement of Newton s first law, also known as the law of equilibrium. 

We give here some simple cases. 

a. Equilibrium with Only Two Forces Acting 

If the two forces F1 and F2 (see Figure 5) are equal in magnitude and opposite in direction (that is, F1 

+ F2 = 0), then the object is in translational equilibrium. If in addition the two forces act along a 

common line of action (collinear forces), as in Figure 5(b), then the object is also in rotational 

equilibrium. 

Note. It is also possible to have rotational equilibrium without translational equilibrium, a situation 

that will be discussed in a later chapter. 

Problem 8: 

A uniform rod is connected to two cords that exert the only forces on the rod, as depicted in Figure 

6; (i.e., we assume there is no pull of gravity on the rod). For each case determine whether the rod 

is in translational equilibrium. If so, can it also be in rotational equilibrium? 

Figure 5 

Figure 6 

Solution 

Since the cords are flexible and exert a force only when they are taut, they can only pull along their 

length, as is depicted by arrows. Case (a) cannot correspond to translational equilibrium because 
the two forces are not equal and opposite (𝐹1 + 𝐹2 ≠ 0), Case (b) can correspond to translational 

equilibrium, if the two forces have equal magnitude, but it cannot represent rotational equilibrium 

because the two forces don’t have a common line of action. Case (c) corresponds to both translational 

and rotational equilibrium if the two cords pull with forces of equal magnitude. 

b. Equilibrium with Three Forces Acting 

If the vector sum of the three forces is zero (F1 + F2 + F3 = 0), then the object is in translational 

equilibrium. If in addition the lines of action of the three forces pass through a common point, then 

the object is in rotational equilibrium as well. Such a system of forces is called concurrent. 
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Problem 9. Consider the same cases as in Problem 8, except now take into account the weight of the 

rod. Which of the cases can now correspond to equilibrium? 

Solution 

Since the rod is uniform, we can assume the weight is a single force acting downward at its center 

(dotted arrows in Figure 6). Now only case (a) can correspond to translational equilibrium since 

only in that case could the vector sum of the three forces add up to zero if the magnitudes were 

suitable (see Problem 10). The rod would also be in rotational equilibrium, because, by symmetry, 

the three forces are concurrent. In neither case (b) nor (c) could the three vector forces add up to 

zero since the weight is perpendicular to the vector sum of the two other forces and could never be 

balanced by them. 

Problem 10. For case (a) of Problem 9, if the weight is 100 N, find the force exerted on the rod by 

each of the two cords if the rod is in equilibrium (a) by geometric means; (b) by the component 

method. 

Solution 

a. Newton’s first law tells us that the resultant of the three forces acting on the rod must be 

zero. In Fig. 4-7(a) we redraw the rod as an isolated object and include only the forces acting 

on it (body diagram). The condition F1 + F2 + F3 = 0 implies that the three vectors, drawn 

head to tail, form a closed triangle. As can be seen in Fig. 4-7(b), the triangle is equilateral for 

our case, so F1=F2 = F2 = 100 N. 

 

Figure 7 

b. We now solve the problem algebraically. Choose the x axis along the rod and the y axis 
perpendicular to the rod at its center. Now slide the vectors parallel to themselves to the origin, for 

easier visualization Figure 7(c). Since the vector sum of the three forces equals zero, we must have 

for the components. 

F1x + F2x + F3x = 0  and F1y + F2y + F3y = 0 

From Figure 7(c), we have 

F1x = F1 cos 30°   F2x = - F2 cos 30°  F3x = 0 

F1y = F1 sin 30°   F2y = F2 sin 30°   F3y = 100N 

Substituting into the x-component equation, 
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F1 cos 30° - F2 cos 30°+ 0=0  or  F1 = F2 

Similarly, the y-component equation gives. 

F1 sin 30° + F2 sin 30°- 100=0  or  0.5F1 +0.5 F2=100 N 

Using F1 = F2 in the y-component equation gives 

0.5F1 +0.5 F2=100 N  or  F1=100 N= F2 

While this method of solving a vector equation seems more cumbersome than the geometric 

method, it can be applied to more general cases where die geometric approach is too difficult to 

use. 

c. Equilibrium with Any Number of Forces 

For the general case of any number n of forces, we again have two conditions for equilibrium. The 

first is the condition for translational equilibrium, or Newton s first law, which says that the vector 

sum of all the forces is zero: ∑ 𝐹𝑖 = 0. For small objects or particles, where rotation can be ignored, 

it is the only condition of equilibrium. For extended objects, the second condition, for rotational 

equilibrium, is again needed. The general case of rotational equilibrium will be discussed in a later 

chapter. The rest of this chapter is concerned only with translational equilibrium. 

 

4. NEWTON’S THIRD LAW 

This law, otherwise known as the law of action and reaction, states that if some object A exerts a force 

Fab on object B, then object B exerts a force Fba on object A that is equal in magnitude and opposite 

in direction: 𝐹𝑏𝑎 = −𝐹𝑎𝑏 The law holds both for contact forces and for action-at-a-distance forces. 

Problem 11. Consider a book lying at rest on a horizontal table. 

(a) What are the forces on the book? 

(b) What is the reaction force to each of these forces? 

(c) What effect do the reaction forces have on the book? 

Solution 

(a) There are two forces acting on the book: its weight (the downward pull of gravity toward 

the center of the earth) and the force exerted upward on the book by the tabletop. 

(b) The reaction to the weight is an upward pull of equal magnitude exerted on the earth by the 

book. The reaction to the table’s force is a downward push of equal magnitude on the table by the 

book. 

(c) The reaction forces have no effect on the book! By definition, any effect on the book is 

represented by a force on the book. The reaction forces act on the earth and on the table—not on 

the book. 

Problem 12. An elephant and a teenager are having a tug-of-war, as shown in Fig. 4-8(a). Does 

Newton’s third law imply a draw? 
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Figure 8 

Solution 

No. Unless the elephant is very weak, the teenager will definitely lose. It is true that the force the 

elephant exerts on the teenager Fet is equal and opposite to the force the teenager exerts on the 

elephant Fte, but the motion of either “object” depends on the resultant of all the forces acting on it. 

Both the teenager and the elephant are pushing the ground forward with their feet, and in each case 

the ground exerts an opposite reaction force. The situation is depicted in Figure 8(b), where Fgt and 

Fge represent the horizontal forces exerted by the ground on the teenager and on the elephant, 

respectively. Thus, for example, suppose that Fet = Fte = 250 lb. We might have Fgt= 100 lb and Fge = 

650 lb. Then a net force of 150 lb acts on the teenager to the left, and he moves leftward. Similarly, a 

net force of 400 lb acts on the elephant to the left, and the elephant also moves leftward. The next 

section deals with friction and shows why it is reasonable to assume that Fge>Fgt. 

a. Tension 

At any given point in a taut rope (or cord, string, thread, or cable) we can ask: With what force does 

the segment of rope on one side of the point pull on the segment of rope on the other side? Consider 

the situation in Figure 9(a), where a girl pulls on one end of a horizontal rope with a force F, while 

the other end is attached to the wall. We consider an arbitrary point p of the rope that divides it into 

two segments A and B, as shown. Figure 9(b) shows the segments as separate bodies, with the 

horizontal forces on each drawn in. By Newton’s third law, the forces with which the two segments 

pull on each other Fab and Fba are equal in magnitude and opposite in direction. The tension T at the 

point p is the magnitude of either of these forces: T= Fab = Fba. Since each rope segment is in 

equilibrium, we also have Fab = F, and Fw = Fba, where Fw is the force of the wall on the rope. Thus, all 

these forces have the same magnitude T. Furthermore, since point p was chosen arbitrarily, we 

conclude that the tension is the same everywhere in the rope. 

 

Figure 9 

b. “Weightless” Ropes 

In general, these results are true only for a horizontal rope in equilibrium. If the rope were vertical, 

with one end attached to the ceiling and the other end pulled down by the girl, then the weight of 
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each segment of the rope would have to be taken into account, and the tension at a point p of the 

rope would equal neither the force with which the girl pulled down nor the force with which the 

ceiling pulled up. Indeed, the tension would vary from point to point in the rope. The same would be 

true if we had a horizontal rope that was not in equilibrium, because the forces applied to either end 

would not balance out. 

There is, however, one circumstance where there is a common tension throughout the rope, and this 

tension always equals the magnitude of the forces acting at the ends of the rope—whether the rope 

is horizontal or vertical, whether the rope is in equilibrium or not. This is the circumstance where 

the rope is weightless. In most problems one characterizes such a rope as a cord, string, or thread to 

indicate its “lightness.” Obviously, no cord is completely weightless, but if it is very light in 

comparison to the other objects in the problem, it can be assumed weightless without much error. 

Problem 13. A block of weight w = 15 N hangs at the end of a (weightless) cord suspended from the 

ceiling. What is the tension in the cord, and with what force does the cord pull down on the ceiling? 

Solution 

The tension is the same at all points of the cord and is equal to the magnitude of the force pulling at 

either end. Since the block is in equilibrium under the action of two vertical forces (the weight 

downward and the pull of the cord upward), these two forces must have the same magnitude. Hence 

the upward pull of the cord = 15 N. By Newton’s third law the magnitude of the pull of the block 

downward on the cord is also 15 N, so T - w = 15 N. The tension T also equals the magnitude of the 

pull of the ceiling on the cord, which by Newton’s third law equals the pull of the cord downward on 

the ceiling. Thus, the downward pull of the top of the cord on the ceiling is the same as the downward 

pull of the block on the bottom of the cord. Thus, we see that a weightless rope transmits an applied 

force from one end to the other. 

 

5. FRICTION 

Friction is the rubbing force between two objects whose surfaces are in contact. The force of friction 

always acts parallel to the touching surfaces. By Newton’s third law each surface exerts a frictional 

force that is equal in magnitude and opposite in direction to that exerted by the other. The magnitude 

of the frictional force exerted by each surface on the other depends on how tightly the two surfaces 

are pressed together. 

a. Normal Force 

The force responsible for this “pressing together” is called the normal force because it acts 

perpendicular to the two surfaces. By Newton’s third law each surface exerts a normal force that is 

equal in magnitude and opposite in direction to that exerted by the other. Figure 4-10 indicates the 

frictional and normal force on each object when a block is in contact with an inclined plane. The 

frictional force (parallel to the surface) and the normal force (perpendicular to the surface) acting 

on a surface can always be thought of as the components of the overall force acting on that surface 

due to the other surface in contact with it. 

b. Static Friction 

When two surfaces are at rest with respect to one another, the frictional force each exerts on the 

other always opposes any tendency to relative motion. The frictional force on an object adjusts itself 

in magnitude and direction to oppose and counterbalance any other forces on the object that would 

tend to make the object start to slide. It varies, as needed, from zero magnitude up to some maximum 

value to stop such slippage. Such a frictional force is called a static friction force (fs). The maximum 
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Figure 10 

 static friction force fs,max that one surface can exert on another is proportional to the normal force N 

between the surfaces: 𝑓𝑠,𝑚𝑎𝑥 = 𝜇𝑠𝑁, where N is the magnitude of the normal force, and ns is a 

proportionally constant, called the coefficient of static friction, that depends on the nature of the 

two surfaces. It is possible to force one object to slide over the other by applying a parallel force to 

one of the objects that is larger than (𝜇𝑠𝑁, the maximum possible static friction force. 

Problem 14: A book of weight w = 10 N rests on a horizontal tabletop, as shown in Figure 11(a), and 

a horizontal force F is applied to it. If the coefficient of static friction 𝜇𝑠𝑁 between the book and the 

tabletop is 0.25, calculate (a) the normal force exerted by the tabletop on the book, and (b) the 

maximum value of the static friction force. 

 

 

Figure 11 

Solution 

(a) Since the book is in equilibrium, the sum of the forces acting on it must equal zero. Figure 

11(b) shows the body diagram for the book with all the forces acting on it. The frictional force is 𝒇𝒔, 

and the normal force is N. Noting that fs and F have no y components, from the condition that the 

sum of the y components equals zero we have 𝑁 − 10𝑁 = 0, or 𝑁 = 10𝑁. 

(b) The maximum value attainable by the static friction force is. 

𝑓𝑠,𝑚𝑎𝑥  = 𝜇𝑠𝑁 =  (0.25) (10𝑁)  =  2.5𝑁 

Problem 15. 

(a) In Problem 14, if the magnitude of the applied force is 𝐹 = 2.0𝑁, what is the magnitude and 

direction of the frictional force on the book? 

(b) What if 𝐹 = 1.0𝑁; 0𝑁? 
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(c) What is the biggest value that F can be before the book starts to slide? 

Solution 

(a) The frictional force opposes the tendency to motion, so it is in the direction opposite to F, as 

shown in Figure 11(b). The magnitude of the frictional force adjusts itself to keep the book at rest, 

which in this case means fs = F = 2.0 N. This value is possible, since it is smaller than the maximum 

found in Problem 14(b). 

(b) If F = 1.0 N, then, by the same reasoning as in part (a), we have fs = 1.0 N in the direction 

opposite to F. If F = 0, then fs = 0, and there is no frictional force at all. 

(c) If F is bigger than 𝑓𝑠,𝑚𝑎𝑥, then the frictional force cannot rise to match F and maintain 

equilibrium. Thus 𝐹 = 2.5𝑁 is the limiting value; beyond this value equilibrium cannot be 

maintained, and the book starts to move. 

c. Kinetic Friction 

Once two surfaces are in motion relative to one another, the frictional force, now called kinetic 

friction (𝒇𝒌), acting on a surface is always in a direction opposed to the velocity of that surface. To a 

good approximation, its magnitude is independent of the magnitude of the velocity and is again 

proportional to the normal force between the two surfaces. Thus, it can be expressed as 𝑓𝑘 = 𝜇𝑘𝑁, 

where 𝜇𝑘, the coefficient of kinetic friction, depends only on the nature of the two surfaces. For 

any given pair of surfaces, 𝜇𝑘 > 𝜇𝑠. 

Problem 16. Assume the book in Figure 11(a) is moving to the right with speed 𝑣. 

(a) Now what are the magnitude and direction of the force of friction exerted by the tabletop 

on the book? 

(b) Does fk depend on the magnitude of the applied force F? 

(c) If the book instead moves to the left with speed 𝑣, with F still to the right, what are the 

magnitude and direction of the force of friction? Assume that 𝜇𝑘 = 0.2. 

Solution 

(a) Once the book is moving the (kinetic) friction is of fixed magnitude,  𝑓𝑘 = 𝜇𝑘𝑁. Since we still 

have equilibrium in, they direction, we still have the same normal force; Thus fk = (0.2) (10 N) = 2.0 

N. The direction of the kinetic friction force is always opposite to the direction of motion, so it would 

be to the left. 

(b) No. 

(c) Since the normal force is still the same, the value off is still 2.0 N. The direction of f* is now 

to the right. Note that the direction of f* depends only on the direction of motion and not on the 

direction of F. 

 

6. CORDS AND PULLEYS 

If a (weightless) cord is bent over a pulley, as in Figure 12, there are two idealized situations in which 

the tension in the part of the cord on one side of the pulley will be the same as the tension in the part 

of the cord on the other side of the pulley. 
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(a)                      (b)   (c) 
Figure 12 

1. The surface of the pulley is frictionless so that the cord slides effortlessly over it (frictionless 

pulley). 

2. The surface of the pulley has friction, but the pulley has no weight and there is no friction 

between the pulley and the axle on which it rotates (weightless pulley). 

In a problem, being told that the pulley is frictionless and/or weightless (massless) is generally 

shorthand for case 1 or case 2, and you can assume as much unless told otherwise. 

Problem 17: In Figure 13(a), the two blocks are connected by a light rope over a frictionless, 

weightless pulley. If the system is initially at rest, will it stay at rest? If so, what is the frictional force 

exerted by the table on block A? 

Solution 

Figure 4-13(b) gives the body diagrams for the two blocks. For block B, assuming equilibrium, the ^-

component equation gives 𝑇 − 𝑊𝑏 = 0 or 𝑇 = 𝑊𝑏 = 10 𝑁. Since we have a rope and a frictionless, 

weightless pulley, the tension is the same on the blocks side of the pulley, and T=10N for block A as 

well. 

Vertical equilibrium of block A requires that N—Wa=0, or N=Wa=30N. Then the maximum possible 

static frictional force is 

𝑓𝑠,𝑚𝑎𝑥 = 𝜇𝑠𝑁(0.5) (30𝑁)  =  15𝑁 

Since T<fS,max, the frictional force can balance T and the system remains at rest. The actual frictional 

force can be obtained from the equilibrium of block A: 

T—fs—0 or fs=T=10N 
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Figure 13 

Problem 18: Find the resultant R of the two forces shown in Figure 14. 

Solution 

R=F1 + F2. We choose x and y axes as shown in the figure and use the component method of 

addition. 

𝐹1𝑥 = 0   𝐹1𝑦 = 20𝑁  𝐹2𝑥 = −(60𝑁) cos 37 °  𝐹2𝑦 = −(60𝑁) sin 37 ° 

𝑅𝑥 = 𝐹1𝑥 + 𝐹2𝑥 = 0 − (60𝑁)(0.8) = −48𝑁 

𝑅𝑦 = 𝐹1𝑦 + 𝐹2𝑦 = (20𝑁) − (60𝑁)(0.6) = −16𝑁 

𝑅 = [(−48)2 + (−16)2]
1
2 = 50.6𝑁 

From the signs of its components, R is in the third quadrant. If 6 is the acute angle that R makes 

with the negative x axis, 

tan 𝜃 = |
𝑅𝑦

𝑅𝑥
| =

16

48
=

1

3
  or   𝜃 = 18.4 ° 

Thus, R has magnitude 50.6 N and points away from the origin at 18.4° below the negative x axis. 

 

Problem 19. Three forces act on a rigid body, as shown in Figure 15, with their lines of action passing 

through the common point B. Find their resultant and its point of application for equilibrium. 

Solution 

𝑹 = 𝑭𝟏 + 𝑭𝟐 + 𝑭𝟑. Choose the x and y axes as shown. Then 

𝑅𝑥 = 𝐹1𝑥 + 𝐹2𝑥 + 𝐹3𝑥 = (−50 N)cos30 ° + (40N)cos45° + (0N) 
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= (−50𝑁)(0.866) + (40𝑁)(0.707) = −15.0𝑁  

𝑅𝑦 = 𝐹1𝑦 + 𝐹2𝑦 + 𝐹3𝑦 = (50𝑁)𝑠𝑖𝑛30° + (40𝑁)𝑠𝑖𝑛 45 ° + (−30𝑁) 

=  (50𝑁) (0.5) + (40𝑁) (0.707) +  (−30𝑁)  =  23.3𝑁 

𝑅 =  [(−15)2 + (23.3)2]
1
2  =  27.7 𝑁 

R is in the second quadrant, with 

tan 𝜃 = |
𝑅𝑦

𝑅𝑥
| =

23.3

15.0
  or   𝜃 = 57.2 ° above the negative x axis 

R can act anywhere along a line of action through B. 

 

Figure 15 

Problem 20: Refer to Problem 18. 

(a) What third force E, must be exerted on the body for it to be in translational equilibrium? 

(b) Where must E be applied to give rotational equilibrium as well? 

Solution 

(a) For translational equilibrium, 𝑭𝟏 + 𝑭𝟐 + 𝑬 = 𝟎, or 𝐸 = −(𝐹1 + 𝐹2) = −𝑅. Hence 𝐸 =

 50.6 𝑁, and E points 18.4° above the positive x axis (see Figure 16). 

(b) E must have the same line of action as R; that is, its line of action must also pass-through 

point A. 

Note. The force which, when added to an existing set of forces on an object, will cause the object to 

be in equilibrium is called the equilibrant of the set. (The force E in the previous problem is thus an 

equilibrant.) 

 

Figure 16 
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Problem 21. Find the equilibrant of the forces in Problem19. 

Solution 

Here we have the concurrent forces F1, F2, and F3 which can be replaced by the single resultant force 

R = F1 + F2 + F3 with line of action through point B, as obtained in Problem 19. Clearly, to have 

equilibrium, the added fourth force, the equilibrant E, must obey 𝐸 = −𝑅. Thus 𝐸 = 27.7 𝑁 pointing 

57.2° below the positive x axis, with a line of action that must also pass through point B. 

Problem 4.22. A block of weight = 400 N hangs from a uniform heavy rope of length 3 m and weight 
w2 = 300 N, as shown in Figure 17(a). Find (a) the force with which the rope pulls on the block; (b) 

the tension in the rope 1 m above the contact point with the block; (c) the force with which the ceiling 

pulls on the rope. 

Solution 

In Figure 17(b) we have the body diagrams for the block, the lower third of the rope, and the full 

rope, respectively. Each is in equilibrium, and the vector sum of the forces on each equal zero. Since 

the forces are all in the y direction, only the equilibrium condition in that direction need be applied. 

 

(a)       (b) 

Figure 17 

(a) For the block, 𝑇1 − 𝑤1 = 0, or 𝑇1 = 400 𝑁 equals the force of the rope on the block. 

(b) For the lower third of the rope, 𝑇2 − 𝑇1
′ − 𝑤′ = 0, where T2 is the contact force of the upper 

two- thirds of the rope on the lower third and is the tension in the rope at that point; T[ is the force 

of the block on the rope, given by Newton’s third law as 𝑇1
′ = 𝑇1 = 400 𝑁; 𝑤′is the weight of the 

lower third of the rope, or 𝑤 ’ = 100𝑁' Thus =  400 𝑁 +  100 𝑁 =  500 𝑁. 

(c) For the rope as a whole,𝑇3 − 𝑇1
′ − 𝑤2 = 0, or 𝑇3 =  𝑇1

′ + 𝑤2 = 400𝑁 + 300 𝑁 = 700 𝑁, 

equals the force of the ceiling on the rope. 

Problem 23: For the weight-and-strings setup of Fig.18(a), find the tensions T1 T2, and T3. 
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Figure 18 

Solution 

From the equilibrium of the block, T1= 600 N. Since the knot is in equilibrium, the body diagram, 

Figure18(b), gives T1 + T2 + T3 = 0. Using the component method, we get 

𝑇1𝑥 + 𝑇2𝑥𝑇3𝑥 = 0 − 𝑇2 cos 60 ° + 𝑇2 sin 50 ° = 0 or  0.5𝑇2 = 0.766𝑇3 or  T2 = 1.532 T3. 

(A sine appears in the x-component equation because the angle of T3 is given relative to the 

y axis). Similarly, 

𝑻𝟏𝒚  +  𝑻𝟐𝒚  + 𝑇3𝑦  =  −𝑻𝟏 + 𝑻𝟐𝑠𝑖𝑛60° +  𝑇3 𝑐𝑜𝑠50° = 0  or 0.866𝑇2 + 0.643𝑇3 = 600𝑁. 

Substituting for T2, 

(0.866) (1.532𝑇3)  +  0.643𝑇3  =  600𝑁  or 1.97073 =  600𝑁  or  𝑇3 = 305𝑁  

Finally, T2 = 1.532T3 = 467 N. 

Problem 24: A block of weight w = 200 N is pulled along a horizontal surface at constant speed by a 

force F = .80 N acting at an angle of 30° above the horizontal, as shown in Figure19. 

 

Figure19 

(a) Find the frictional force f exerted on the block by the surface. 

(b) Find the normal force N exerted on the block by the surface. 

(c) Find the coefficient of kinetic friction, fik, between the block and the surface. 

Solution 
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(a) The four vector forces acting on the block are shown in Fig. 4-19. Since the block is in equilibrium; 

their sum equals zero. For the x components we thus have 

F cos 300 - fk = 0  or  fk = (80 N) (0.866) = 69.3 N 

(b) Similarly, for the y components, 

F sin30°+N - w =0 or N = 200N - (80N) (0.5) = 160N 

Note that the normal force is not equal to the weight even though the block is on a horizontal surface, 

because the force F has a vertical component. 

(c) 𝜇𝑘 = 𝑓𝑘/𝑁 =  69.3/160 =  0.433. 

Problem 25: A hanging weight w1 is connected by a light cord over a frictionless pulley to a block 

on a frictionless incline of weight w2=500N, as shown in Figure 20. If the block on the incline moves 

down at constant speed, what is the weight of the hanging block? How would your answer change if 

it were moving up the incline at constant speed? 

 

Figure 20 

Solution 

In Figure20, all the forces on the respective blocks are shown right on the diagram for the system as 

a whole. Since both blocks move in straight lines at constant speed, they are each in equilibrium. For 

the hanging block, using y components, we have T1 — w1 = 0, or w1=T1. To find T1 we turn to the block 

on the incline. We choose x and y axes along the incline and perpendicular to it, respectively. We also 

note that the force of the cord on each block has the same magnitude, so T2-T=T, since the cord is 

light, and the pulley is frictionless. Then, for the x-component equilibrium equation we get 

𝑇 − 𝑤2 sin 𝜃 = 0  or 𝑇 =  (500 𝑁) (𝑠𝑖𝑛 37°)  =  300𝑁 

Then from our earlier result w1 = T = 300 N. Note that we did not need to solve the y-component 

equilibrium equation for the block on the incline to solve for T and w1. This is because the y-

component equation gives us the normal force N., which does not affect the x-component equation 

when there is no friction. If the block were moving up the incline, the blocks would still be in 

equilibrium under the action of the same forces, so the answer would remain the same. 

Problem 26. Suppose that in Problem 25 there was friction between the block and the incline, and 

that the coefficient of sliding friction was  𝜇𝑘 =  0.3, but all the other data in the problem remained 

unchanged. Find the weight of the hanging block, w1 if the other block moves at constant speed 

(a)down the incline; (b) up the incline. 

Solution 
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(a) We can use Figure 20 with the modification that there is an additional force on the block on 

the incline, a frictional force of magnitude fk opposing the motion of the block and hence pointing 

parallel to the incline in the upward direction. From the rules for friction, we have 𝑓𝑘 = 𝜇𝑘𝑁, where 

N is the normal force exerted on the block by the incline. Following the reasoning of Problem 25 we 

now have for the x components. 

𝑇 + 𝜇𝑘𝑁 −  𝑤2 𝑠𝑖𝑛 37 ° =  0  or  𝑇 =  (500 𝑁) (0.6) −  0.3 𝑁 

For the y components 

𝑁 −  𝑤2 𝑐𝑜𝑠 37° =  0  or  𝑁 =  (500𝑁) (0.8)  =  400𝑁 

Substituting into the previous equation we have 

𝑇 =  (500 𝑁) (0.6)  −  0.3 (400 𝑁)  =  300 𝑁 −  120 𝑁 =  180𝑁 

Since the hanging block obeys w1= T, we have our result, w1=180N. 

(b) If the block is moving up the incline at constant speed, we proceed as before, noting that the 

frictional force is now directed down the incline although it still has the same magnitude 𝑓𝑘  = 𝜇𝑘𝑁. 

Furthermore, the y-component equation for the block on the incline is unchanged, so we still have N 

= 400 N and fk = 0.3(400 N) = 120 N. The x-component equation changes only in that the sign of the 

x-component of the frictional force changes, and we get. 

𝑇 − 𝜇𝑘𝑁 − 𝑤2 sin 37 ° = 0  and  𝑇 = 300𝑁 + 120𝑁 = 420𝑁 

Finally, 𝑤1 = 𝑇 = 420 𝑁 

Problem 27. For the setup in Figure18(a)—first discussed in Problem 23—the breaking point of the 

two cords attached to the wall mid ceiling is 1500 N. How heavy can the block be without one of the 

cords snapping? Assume the cord attached to the block can handle any weight. 

Solution 

We first determine which of the two cords will reach a tension of 1500 N first. To do this we recall 

from Problem 23 that equilibrium in the x direction requires. 

T3 sin 50° = T2 cos 60°   or  0.766T3 = 0.50T2  or  T3 — 0.653T2 < T2 

Clearly T3 is always less than T2, and hence T2 will reach 1500N first. We now set T2 = 1500 N; from 

above, this immediately yields T3 = 0.653 (1500 N) = 980 N. We can now determine the 

corresponding weight w of the block using the equilibrium equation in the y direction: 

𝑤 = 𝑇1 = 𝑇2 sin 60 ° + 𝑇3 cos 50 ° = (1500𝑁)(0.866) + (980𝑁)(0.643) = 1929𝑁 

 

7. NEWTON’S SECOND LAW OF MOTION 

Newton's second law of motion states that the acceleration of an object is directly proportional to 

the net force acting on it and inversely proportional to its mass. Mathematically, it is expressed as: 

 

𝐹 = 𝑚𝑎 

Where: 

𝐹 is the net force acting on the object (in newtons, 𝑁), 

𝑚 is the mass of the object (in kilograms, 𝑘𝑔), 
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𝑎 is the acceleration of the object (in meters per second squared, 𝑚𝑠−1). 

a. Resultant force and acceleration 

Earlier it was found that if the vector sum of the forces on an object-the resultant force-is 
zero, then the object is in translational equilibrium, i.e., it has constant velocity, or, equivalently, 
zero acceleration. If the resultant force is not zero, then we should expect that the acceleration 
also would not be zero. Indeed, we should say that the unbalanced force <Yn the object caused its 
acceleration. Newton's second law is the quantitative statement of this cause-and-effect 
relationship. 

i. Experimental Facts and the Formulation of Newton Second Law 

When a nonzero resultant force F acts on a given object, the consequent acceleration a 
always points in the direction of F. Also, for a given magnitude of F, the magnitude of a is the same 
no matter what the direction of the force. On the other hand, if the magnitude of F doubles, the 
magnitude of a doubles; if the magnitude of F triples, the magnitude of a triples; etc. Thus, the 
magnitude of a is proportional to the magnitude of F, or 𝐹 ∝ 𝑎 . The proportionality constant is 
called the mass m of the object, and we write F =ma, where m is generally different for different 
objects. Since m is a scalar quantity, we can combine the results for the magnitude and the 
direction of the acceleration in the single equation. 

𝐹 =  𝑚𝑎 

This equation is the mathematical statement of Newton's second law. In Figure 21 (a) and 
(b), we show different resultant forces having the  same magnitude  acting on (a) the  same 
object and 
(b) different objects, and the resulting accelerations of those objects. 

 

Figure 21 

ii. The Meaning of Mass 

As can be seen in Figure 21 the mass controls the response of the object to a given magnitude 

force: A small mass means a large acceleration, a large mass means a small acceleration. 

Because mass measures the resistance of an object to having its velocity changed ("being 

shoved around"), it is often referred to as the inertia of the object. The relative magnitude 

of different masses can easily be established by applying the same magnitude force to the 

different objects and measuring their accelerations.  Then 

𝑚1𝑎1 = 𝑚2𝑎2   or   
𝑚1

𝑚2
=

𝑎2

𝑎1
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The mass is clearly an intrinsic property of an object, but for it to be a truly fundamental 

property of all matter one needs to show that objects maintain this property even when 

they are combined with other objects. Figure 5-1(c) shows a resultant force being applied 

to two objects stuck together. The resulting acceleration is just what one expects if the 

mass of the combination is 𝑀 = 𝑚1 + 𝑚2.  The mass is thus an indestructible and 

unchanging property of any object that stays with the object even when it is combined into 

larger units. In the same way, when an object is broken into smaller parts, the sum of the 

masses of the parts equals the original mass. 

iii. Units of Force and Mass 

In the International System (SI) units, the unit of force is already determined for us from 

Newton's second law once we have a unit of mass and a unit of acceleration. The unit of 

mass is the kilogram, and the unit of acceleration is the meter per second squared. The 

corresponding unit of force is the Newton (N), and from 𝐹 =  𝑚𝑎 we have 

1𝑁 = (1𝑘𝑔)(1𝑚𝑠−2) = 1𝑘𝑔. 𝑚𝑠−2 

In other words, a 1-N force gives a 1-kg mass an acceleration of 1m/s2. If one chooses the 
gram as the unit of mass and the centimetre per second squared as the unit of acceleration, 

then the unit of force is called the dyne. Again, from F = ma 

1 𝑑𝑦𝑛 = (1 𝑔)(1 𝑐𝑚𝑠−2) = 1 𝑔. 𝑐𝑚 𝑠−2 

Problem 5.1: How many dynes are there in a newton? 

Solution 

1 N = 1 kg·m/s2 = (1000 g)(lOO cm)/s2 = 100,000 g cm/s2 = 105 dyn 
 

Problem 28. What is the magnitude and direction of the acceleration of an object whose 

mass is 10 kg when it is acted on by a resultant force of 380 N at 30 ° above the positive 

x axis? 

Solution 

The direction is the same as that of the resultant force, 30 ° above the positive x axis. For 
the magnitude F = ma gives 

𝑎 =
𝐹

𝑚
=

380𝑁

10 𝑘𝑔
= 38𝑁. 𝑘𝑔−1 =

38𝑘𝑔 𝑚𝑠−2

𝑘𝑔
= 38 𝑚𝑠−2  

 
Problem 2 9 . A constant force acts on a 30-g object and produces an acceleration of 

2m/s2. Find the force in dynes. 

Solution 

We are given mixed units, so we first convert the acceleration to the  gram-centimeter-second 
system: a = 2 m/s2  = 200 cm/s2 . Then F = ma gives 

F = (30 g) (200 cm/s2 ) = 6000 dyn 

 
iv. The English System and Weight 

In the English system of units, it is the unit of force, the pound (lb), that is fundamental, rather than 
the mass. One pound (1 lb) is defined as the pull of gravity on an object whose mass is 0.45359 
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kg at a specified latitude of the earth's surface. (The pull of gravity on an object is commonly 
called its weight.) The corresponding unit of mass is now defined using the second law, F = ma 

mass of 1 slug is that mass which when acted  on by  a force of  1 lb accelerates  at  1 ft/s2,  or 

1 slug = (l lb)/(1 ft/s2  . 

To convert from pounds to newtons we have to discuss the nature of weight. If an object near the 
earth's surface is acted on only by the force of gravity, it will  accelerate with the acceleration 

g = 9.8 m/s2 . Calling the force of gravity, or weight, w, the second law gives w = mg. Since g is the 
same for all objects, w/ m = g is constant. Thus, weight and mass are proportional at a given point 
on the earth's surface. As one changes position on the earth's surface, both w and g vary slightly, 
but m stays constant. This will be discussed in more detail when we discuss the law of universal 
gravitation. We can now determine the conversion from the English to the metric system. From its 
definition: 1 lb = (0.45359 kg)(9.8 m/s2) = 4.445N. The mass 0.45359 kg is given a special name 
and called 1 pound-mass (i.e., the mass that weighs 1 lb). Since a force of 1 lb gives 1 lb-mass an 
acceleration g = 9.8 m/s2= 32.2 ft/s2, while it gives 1 slug an acceleration of only 1 ft/s2, it 
follows that 1 slug = 32.2 lb-mass = 32.2 (0.45359 kg) = 14.7 kg. 

Problem 2 9  What is the weight w, in pounds, of a 1-kg mass? 

Solution 

We can first get w in newtons. w = (1 kg)(9.8 m/s2) = 9.8 N. Dividing by 4.445 N/lb we 
get w = (9.8.N)/(4.445 N/lb) = 2.20 lb. We could also get the result directly from the fact that 
0.45359 kg weighs 1 lb, and therefore 1 kg weighs 1/0.45359 = 2.20 times as much. 
 
Problem 3 0 :  A resultant force of 50 lb acts on an object weighing 12 lb. Find the acceleration. 

Solution 

The mass of the object is 𝑚 =
𝑤

𝑔
 = (12 lb)/(32 .2 ft/s2) = 0.373 slug. Then 

50 lb = (0.373 slug)a or a = 134 ft/s2 
 

8. APPLICATIONS OF THE SECOND LAW 

Whenever applying the second law it is essential to clearly identify the object being accelerated 
and to be sure that the force appearing in the equation is the resultant of all forces acting on the 
object. Also, because 𝐹 =  𝑚𝑎 as a vector equation, it may be useful to resolve it into 
components along convenient x and y axes. 

a. Forces on a Single Object 

Problem 5.6. A constant force T pulls horizontally on a block of mass m = 2.0 kg, which is free 

to move on a frictionless horizontal surface, as shown in Figure 22(a). Starting from rest, 
the block is observed to move 20.0 m in 2.0 s. Find T. 
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Figure 2 

Solution 

We first draw a body diagram for the block, with all forces on the block drawn in, as shown in 
Figure 22(b). Also shown is the acceleration a. Since the acceleration is along the x direction 
(the block stays on the table), we have ax = a and ay = 0. For the x direction we have Fx = max . 
Since Tis the only force with an x component, and it points  in the x direction, we have  T = ma  
or T = (2.0 kg)a. Since T is constant, we know that a is constant, and we can use the kinematic 
equations for constant acceleration, together with the kinematic information given. Since the 
block starts from rest, we can set 𝑥0 = 𝑣0𝑥 = 0. We then have 𝑥 = (1/2)𝑎𝑡2, which for our case 
yields 20.0 m = a (2.0s)2 or a = 10.0 m/s2. Then 

T = (2.0 kg) (10.0 m/s2) = 20.0 N 

Problem 31. Redo Problem 30, if there is now friction between the block and tabletop and 
the coefficient of kinetic friction is µk = 0.3. 

Solution 

The body diagram in Figure 22 remains the same except that there is one additional force fk 

in the negative x direction. Since fk = µkN, we need to find the normal force N. Considering the y 

direction we have (since ay = O) N = mg = 19.6 N. The x equation is now T- fk = ma or T- µk 

N=ma. Substituting in the known values, we get 

𝑇 − 0.3(19.6 𝑁) = (2.0 𝑘𝑔)(10.0 𝑚/𝑠2) or 𝑇 =  25.88 𝑁 

Problem 32. A block of mass m = 5.0 kg slides from rest on a horizontal frictionless surface 
under the action of a force of 60 N in a direction 40 ° above the positive x axis. How fast is the 
block moving at the end of 6 s? 

Solution 

The situation is depicted in Figure 23, where, instead of having a separate body diagram, all 
the forces acting on the block are directly drawn in. Only the x motion is of interest, and 𝐹𝑥 =
𝑚𝑎𝑥 yields 

(60 𝑁) 𝑐𝑜𝑠 40 ° = (5.0 𝑘𝑔)𝑎 or 𝑎 =  9.2 𝑚−2 

Since we are starting from rest we have Vx = at = (9.2 m/s2)(6 s) = 55.2 m/s  
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Figure 23 

Problem 33. A block of mass 𝑚 = 12 𝑘𝑔  slides down a frictionless inclined plane of 

angle 50 °. What is the acceleration? 

Solution 

The situation is shown in Figure 24. Since we know the motion of the block will be down the incline, 
we choose our x axis down along the incline. Since there is no friction, the only force with a 

component along the incline is the weight 𝑤 = 𝑚𝑔. Then 

𝑚𝑔𝑠𝑖𝑛 50° = 𝑚𝑎 or 𝑎 = 𝑔𝑠𝑖𝑛50° = (9.8 𝑚𝑠−2
 
) (0.766)  =  7.51 𝑚𝑠−2 

Note.: The acceleration is independent of the mass, just as for the case of freely falling 

objects. Indeed, if the angle of the incline is any angle e, the acceleration is 𝑎 = 𝑔𝑠𝑖𝑛𝜃. 

 

Figure 24 

Problem 34. Suppose that in Problem 3 3  there is friction, with µk = 0.2. Find the acceleration. 

Solution 

A frictional force fk = µkN, acting up the incline (in the negative x direction), must be added to the 
forces already shown in Figure 24. Since we have equilibrium along the y axis,  

𝑁 = 𝑚𝑔𝑐𝑜𝑠50 ° and 𝑓𝑘  =  µ𝑘𝑚𝑔 𝑐𝑜𝑠 50° 
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Then, for the x motion, mg sin 50°- µkmg 50°= ma. Dividing out the mass we obtain 

a = g sin 50 ° - µkg cos 50 ° = g(sin 50 ° - µk cos 50 °) 

= (9.8 m/s2 ) (0.766- 0.2 0.643) = 6.25 m/s2 

Problem 35. A child weighing 80 lb stands on a bathroom scale in an elevator. Find his "effective 
weight" as read on the scale, if the elevator is (a) moving downward at constant speed; (b) 

moving upward at constant speed; (c) accelerating upward at 8.0 ft/s2; (d) accelerating upward 
at 32 ft/s2; (e) accelerating downward at 8.0 ft/s2; (f)accelerating downward at 32 ft/s2. 

Solution 

The child is under the action of two forces, the weight w = mg downward and the normal force N of 

the scale upward. (The bathroom scale reads the value of N, which is what we call the "effective 
weight".) We choose our positive direction upward. 

(a), (b). In these two cases the acceleration is zero, so the child is in equilibrium, and we must 
have N = mg = 80 lb, the true weight. 

(c). Now 𝑁 − 𝑚𝑔 = 𝑚𝑎 or 

𝑁 = 𝑚(𝑔 + 𝑎) = (𝑤/𝑔)(𝑔 + 𝑎) = 𝑤(𝑔 + 𝑎)/𝑔 = (80 𝑙𝑏)(32 + 8)/32 = (80 𝑙𝑏) (
40

32
)  

=  100 𝑙𝑏. 

Note. This "effective weight" is not just a mathematical result. The child will actually feel 
heavier. Just as the scale pushes up with a force greater than the weight to give the entire child 
an upward acceleration, so too the lower half of the child must push up on the upper half with 
a greater than usual force to give that half its acceleration. Indeed, each part of the body must 
exert a proportionately greater force on every other part, hence the feeling of weighing more. 

(d) We still have N = w(g + a)/g , but now a = 32 ft/s2 Therefore N = (80 lb)(64/32)= 160 lb, 
or double the weight. 

(e) Now a=-8m/s2 , and N = (80lb)m) = 60 lb. 

(f) Now a = -32 ft/s2 and g + a = 0, so N = 0. 

Note. The answer to part (f) is not surprising because the child is accelerating downward with the 
acceleration of gravity, which is called "free fall." The child in fact feels weightless since no forces 
other than gravity can be acting on any given part of his body. Thus, the usual forces exerted by 
different parts of the body on each other are not there, and it feels strange. A satellite moving 
around the earth is also in free fall, which is why the astronauts inside feel weightless. 


