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§ 1.0 REAL VALUED FUNCTIONS OF A REAL VARIABLE
INTRODUCTION

The collection of all real numbers is denoted by R. Thus, R includes the

p

integers---—2,-1,0,1,2,---, the rational numbers, o where p and g are integers

(g # 0), and the irrational numbers, like V2, m, e, etc. Members of R may be
visualized as points on the real number line as shown in the figure below:
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We write a € R to mean a is a member of the set R. In other words, a is a real
number. Given two real numbers a and b with a < b, the closed interval [a, b] consists of
all x such that a < x < b and the open interval (a, b) consists of all x such that a < x < b.
Similarly, we may form the half open or clopen intervals [a, b) and (a, b].

The absolute value of a number x € R is written as |x| and is defined as

|X|={ x if x>0
—x if x <0

For example, |2| = 2, |-2| = —(—2) = 2. Some properties of |x| are summarized as
follows:
1. |-x]=|x| Vx€R
—|x|<x<|x|VxeR
For afixed r > 0, |x| < r if and only if (iff) x € (—r,r)
VxZ = x|, x € R
(Triangle inequality) |x + y| < |x| +|ly] ¥ x,y € R

o M 0D

Theorem 1.0.1: Ifa > 0, then |x| < aiff —a < x < a.

Proof: There are two statements to prove: first, that the inequality |x| < a implies the
inequalities —a < x < a and conversely, that —a < x < a implies |x| < a.

Suppose |x| < a. Then we also have —a < —|x|. But either x = |x| or x = —|x| and
hence —a < —|x| < x < |x| < a. This proves the first statement.

Conversely, assume —a < x < a. Then if x = 0, we have |x| = x < a, whereas if

x < 0, we have |x| = —x < a. In either case, we have |x| < a, and this complete the proof.
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Theorem 1.0.2: (Triangle inequality) For any arbitrary real number x and y, we have

lx +y| < x|+ |yl .
Proof: Adding the inequalities —|x| < x < |x| and —|y| < y < |y| we obtain
—(xl+1lyD < x+y < x| + Iyl
and hence, by Theorem 1.0.1, we conclude that
lx +y| < [x] + |yl u
If we take x =a—c and y =c—b, then x +y =a — b and the triangle inequality
becomes |a—b|<|a—c|+|b—c|. This form of the triangle inequality is often used in

practice.

1.1 FUNCTIONS

A function f: A — B is a rule that assigns to each a €A one specific member f(a) of

B. The fact that the function f sends a to f(a) is denoted symbolically by a ~ f(a). For

2

2
(1x—x) assigns the number (lex) to each x # 1 in R. We can specify a

example, f(x) =

function f by giving the rule for f(x). The set A is called the domain of f and B is the
codomain of f. The range of f is the subset of B consisting of all the values of f. That is,
the range of f = {f(x) € B:x € A}.

Given f:A - R. It means that f assigns a value f(x) in R to each x € A. Such a
function is called a real-valued function. For a real-valued function f: A — R defined on a

subset A of R, the graph of f consists of all the points (x, f(x)) in the xy —plane.

y
A

(x, f (x)

Let f be a function whose domain Dy and range R; are sets of real numbers. Then
f is said to be even if f(x) = f(—x)Vx € D;. And f is said to odd if
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(—=x) = —f(x) Vx € D.. (Check whether y = x3 —3x,x* — x2, sinx,cosx are even or
f y

odd.) Also, f is said to be one-to-one if f(x;) = f(x2) = x; = x, V x4, %, € Dy.

A function f of the independent variables x4, x5, ---, x,, with dependent variable y is

of the form y = f(xy,x,,++,x,,). The function f is called function of several variables. If

n = 2, we frequently write z = f(x,y), and if n = 3, we write w = f(x,y, z). In this case, the

domain D of a function is the set of allowable input variables (x4, x,, -+, x,) € R", while the

range is the set that contains all positive values for the output variable y. This means y is

in the range of f if there exists (3) a (xq,x5,::+,x,) € D sothat y = f(xq, x5, -+, x).

Remark: Some examples of real functions

1.

Constant function. A function whose range consists of a single number is called a

constant function. E.g. f(x) = 5.

Linear functions. A function g defined for all real x by a formula of the form g(x) =

ax + b is called a linear function because its graph is a straight line.

The Power function. For a fixed positive integer n, let f be defined by the equation

f(x) =x™V real x. Whenn = 1, this is the identity function. Whenn = 2, the graph
is parabola. For n = 3, the graph is a cubic curve.

Polynomial function. A polynomial function P is one defined for all real x by an

equation of the form P(x) = ¢y + cox + c3x% + - + cpx™ = Y, cpx®. The number
o, C1, -+, C, @re called the coefficients of the polynomial and the nonnegative integer

n is called its degree (if ¢, # 0).

. . . : i _(0if x<0
Unit step function, u(x), is defined as follow: u(x) = { 1if x>0
. . . . . , _x _(1if x>0
Signum function, sign (x), is defined as sign (x) = e {_1 i x<0

1.2 LIMIT OF FUNCTIONS

We begin with a review of the concept of limits for real-valued functions of one

variable. Recall that the definition of the limit of such functions is as follows.

Definition 1.2.1: Let f:D c R—> R and letc € R. Then lim,_,. f(x) = L means that for

each € > 0 there exist some § > 0 such that that |f(x) — L| < €, whenever

O0<|x—c|<éd.(orc<x<c+96)

are.

The two fundamental specific limits results which follow easily from the definitions
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1. If a € R, then lim,_,.a = a and

2. lim,_.x =cforanyceR.

The basic facts used to compute limits are contained in the following theorem.

Theorem 1.2.2: Suppose that for some real numbers L and M, lim,_,. f(x) = L and

lim,_. g(x) = M. Then
(i) lim,_. k = k, where k is constant
(i) limye, (f () + g(x) = limyee f(x) + limyc g ()
(iif) - limy,(f(x) = g(x)) = limy,c f£(x) = limyc g(x)
(iv)  limy, (f(x)g(x)) = (limyc f£(x)) (limyc g(x))

. f(x) limye f(x) .
(v)  lim,_, (g(x)) = l;m;zg(x) if lim,_. g(x) # 0.

Proof:
(JLet f(x) =k Vxande > 0begiven. Then |[f(x) —k|=|k—k|=0<€e Vx. =

For (ii) — (iii), let e > 0 be given and let lim,_. f(x) = L and lim,_,. g(x) = M. By
definition 3 §; > 0 and 6, > 0 such that

|f (x) = L| <§ whenever 0 < |x —¢| < 6, (1)

lg(x) — M| <§ whenever 0 < |x — c| < 6, 2)

(i) Let § = min (83, 6,). Then 0 < |x — c| < & implies that
0<|x—c|l<8yand|f(x)—LI<: (by (1)) (3
0<|x—c|<8and|glx) - M| < (by(2) (4)

Hence, if 0 < |x — ¢| < §, then

|(f() + g(x)) = (L + M)| = |(f(x) — L) + (g(x) — M)|

<|f(x) —L|+ |g(x) — M| (Triangle inequality)
<-+- (by(3)&(4)

<e€. ]

(iii) Let & be defined as in part (ii). Then 0 < |x — c| < § implies that
|(f(x) = g(x)) = (L = M)| = |(f (x) = L) + (g (x) — M)|
<IfG) - LI+ 1g(x) — M|

6
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<€4€
3 3
<e€ [ |

(iv) Let € > 0 be given. Let ¢; = min (1, 1+|LT+|M|)
Then €; > 0 and, by definition, there exists §, and §, such that
|f(x) —L| <e; whenever0 < |x—c|<d; (5)
lg(x) — M| < e, whenever0 < |x —c| < 6, (6)
Let § = min (6;,6,). Then 0 < [x — c| < 6 implies that
0<|x—c|<éyand|f(x) - Ll <e (by(5) (7)
0<|x—c[<éand|g(x) — M| <e, (by(6)) (8)
Also,
lf()g(x) —LM| = |(f(x) =L+ L)(g(x) =M + M) — LM|
=[(f(x) = L)(g(x) = M) + (f(x) — L)M + L(g(x) — M)|
< |f(x) = Lllg(x) = M| + |f(x) — LIIM| + |L||g(x) — M|
<e€?+|Mle;+ |Lleg
<e€ +|Mle, + |Lleg
=1+ M|+ |LDey

<€e.n

(v) Suppose that M > 0 and lim,_. g(x) = M. Then we show that limxﬁcﬁ = % Since
% > 0, 3 some §; > 0 such that
lg(x) — M| < % whenever 0 < |x — c| < &4,

—%+M < gx) <%whenever 0<|x—c| <6y,

0 <%<g(x) <%whenever0 <l|x—c| <64,

L~ 2 whenever 0 < lx —c| < &;.
lgol M

2
Let € > 0 be given. Let ¢ =¥ . Then ¢; > 0 and there exists some § > 0 such that

6 <6;and|g(x) — M| <e; whenever 0 < |x —c| < § <8y,
| 1 1 |M - gx)
gx) M gx)M
_ lg)-m]|
lgCM|
1 2

= —r—-c
M M 1
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_261
e

= € whenever 0 < |x — c| < 6.

This complete the proof of the statement lim,._,. ﬁ = % whenever M > 0.

(iv) to prove (v) as follows:

lim@ = lim (f(x) L)

xoeg(x)  x-c g(x)
. . 1
= lim (0 - limyc (=)
=1L % = % This complete the proof of the Theorem.

Now we take up the subjects of limits for real-valued functions of several variables.

Definition 1.2.3: Letf:D c R" > R, let P, € R™ and let L € R. Then limpe-p, f(P) =L
PeD

means that the distance, for each € > 0 there exists § > 0 such that if P € D and if
0<|P—-Py| <6,then|f(P)—L|<e.

Note that the first use vertical lines denotes absolute value while the second
denotes distance between two points in R™. To begin computing limits we first need some
specific results similar to those for functions of one variable. The basic principle is that if a
function of more than one variable is considered as a function of more than one variable,
then the limit of the function is computed by taking the limit of the function with respect to

its only variable. One specific case of this principle is stated below.

Theorem1.2.4: Let i: E c R — R and set f(x,y) = h(x). Suppose lim,_, h(x) = L. Then

limey ) ap) f(x,y) = L forany b € R.

For example, lim(y )20y X° = lim,,, x* = 8 and limg, )20 /¥ = limy o /¥ = 3.
Essentially all examples of functions of several variables we will encounter are constructed
from functions of one variable by addition, multiplication, division and composition. So the
following Basic Limit Theorem will permit us to compute limits.

Theorem 1.2.5: Letf,g:D c R" - R. Suppose lime-p, f(P) = L and lime-p, g(P) = M.
PeD PeD

Then
1. limp-p, f(P)+ g(P) =L+ M
PeD



www.crescent-university.edu.ng

2. limp-p, f(P)g(P) = LM and
PeD

3. limp-py—==— provided M # 0.

i
pep 9(P

) _
)

Moreover, if limp-op, f(P) =L = llmP—>P0 g(P) and if f(P)<h(P)<g(P), then

PeD

limP—>P0 h(P) = L.

PeD

(The Sandwich Theorem for functions of several variables.)

1.2.6 Examples

(1) Suppose that f(x) < g(x) < h(x) for all x in an open interval containing ¢ and
lim,_. f(x) = lim,_. h(x) = L. Then show that lim,_,. g(x) = L.
Proof: Let € > 0 be given. Then there exist §; > 0, §, > 0, and § = min{d;, §,} such that
If(x) = L| < gwhenever 0<|x—c|l<é;
|h(x) — L] < g whenever 0 < |x — ¢| < 6,.
fO<|x—c|<d,then0 < |x—c| <éd, 0<|x—c| <, and, hence,

lg(x) = L| <> whenever 0 < |x —¢| < &, and lim, . g(x) = L.

(2) Evaluate each of the following limits.

x%—x-2 . 4x3

V9 3 .
+—x (C) hmx_,z W (d) hmx_,oo m .

(@) lim,_o(x% — 6x +3) (b) lim,_,

Solution
(@) limy_o(x? — 6x + 3) = hrr(% x? — llr% 6x + lim 3

x—0
= (0)2—6(0) + 3
=3

V9+x-3 . V9+x-3 V9+x+3
—— =lim ( )

(b) lim..o x e

x—0

= lim [x(m+3)]

= lim ——
x—0V9+x+3

~ V943

x%—x-2 . (x+1)(x-2)

(C) limyp == = limy o o =S

x+1
= lim

x—>2 x+2
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_ )l(l_rg (x+1)

)lcl_I}%(x+2)

x3+3 x3 3

- E
lim 1+lim—
X—00 X
X—00

=4
Remark: There are some examples of limits which we can use L’Hospital rule and Taylor

series to solve and we shall discuss these later.

1.3 CONTINUITY OF FUNCTIONS
Definition 1.3.1: (Continuity at a point) The function f is said to be continuous at ¢ from
the right if f(c) is defined or exist, and lim,_,.+ f(x) = f(c).

Definition 1.3.2: The function f is said to be continuous at ¢ from the left if f(c) is
defined and lim,._,.- f(x) = f(c).

Definition 1.3.3: The function f is said to be (two sided) continuous at c if f(c) is
defined, and lim,_,. f(x) = f(c).

Remark:

(1) The continuity definition requires that the following conditions be met if f is to be
continuous at ¢ (a point): (a) f(c) is defined as a finite real number, (b) lim,._ .- f(x)
exists and equals f(¢), (c) lim,_.- f(x) = f(c) = lim,_ .+ f(x) . When a function f is
not continuous at ¢, one or more, of these conditions are not met.

(2) All polynomials, sinx, cosx,e*,sinhx, coshx,b*,b # 1 are continuous for all real
values of x. All logarithmic functions, log, x,b > 0,b # 1 are continuous for all
x > 0. Each rational function, p(x)/q(x), is continuous where q(x) # 0.

(3) Alternative definition: Let f:D c R—> R and let a € D. Then f is continuous at a
means limx-a f(x) = f(a). For function of several variables: Let f:D c R" - R

and let x, € D. Then f is continuous at x, means limxﬁ:;of(x) = f(x0)-
X€
10



www.crescent-university.edu.ng

(4) Epsilon definition: We can define f as continuous at x = x, if for any € > 0 we
can find § > 0 such that |f(x) — f(x,)| < € whenever |x — x,| < 6.

(5) Continuity in an interval: A function f is said to be continuous in an interval if it is
continuous at Il points of the interval. In particular, if f is defined in the close interval

[a,b], then f is continuous in the interval if and only if lim,_, f(x) = f(x,) for

a < xy <b,lim,_,+f(x) = f(a) and lim,_,- f(x) = f(b).

1.3.4 Continuity Examples

(1) Verify the continuity of the following functions:

(a)f(x)=3xiatx=1

x2+2x—1

(b) f(x) =|x| atx = 0.

Solution:

(@) fF(1) =

12-1

szt = 0

. . x%—
limye f(0) =lim o=

T (x—1)(x+1)
- }CI_I;I} (Bx—-1)(x+1)

BT (x-1)
T x-1(3x-1)

=0
< limyeq f(x) = f(1) = 0.

Hence, f(x) is continuous at x = 1.

(b)

y=|x|

We have f(0) =10| =0
limyo- f(x) =0
lim, o+ f(x) =0

=~ f(x) is continuous at x = 0 since lim,._,, f(x) = f(0) = 0.
11
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[Alternatively, Let e > 0 be given. Let § = €. Then |x — 0| < € = |x| < €. Hence,

lim,_q|x| = 0.]

(2) Show that the constant function f(x) = 4 is continuous at every real number c¢. Show

that for every constant k, f(x) = k is continuous at every real number c.

Solution:
First of all, if f(x) = 4, then f(c) = 4. We need to show that lim,._,. 4 = 4.

For each € >0, let § =1. Then |f(x) — f(c)| =14 —4| =0< € for all x such that
|x — c| < 1. Secondly, foreach e > 0, let 6§ = 1. Then |f(x) — f(c)| = |k — k| = 0 < € for all

x suchthat|x —c|<1. =
(3) Show that f(x) = 3x — 4 is continuous at x = 3.

Solution: Let € > 0 be given. Then
lf(x) = f3) =1Bx—4) -5
= [3x — 9|
= 3|x — 3|
< € whenever |x — 3| < g .
We define = g . Then it follows that lim,._,; f(x) = f(3) and, hence f is continuous at

x = 3.

(4) Show that f(x) = x3 is continuous at x = 2.
Solution:
Since f(2) =8, we need to prove that lim,_,x3 =8 =23. Let e > 0 be given. Let us
concentrate our attention on the open interval (1,3) that contains x = 2 at its mid — point.
Then
If ) = fF@)I = |x* — 8

=|(x —2)(x? + 2x + 4)|

= |x — 2||x? + 2x + 4|

< |x—2|(|x?| + 2|x| + 4)

<|x—2|/(9+18+4)

= 31|x — 2|

<e€

12
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provided |x — 2| < .
Since we are concentrating on the interval (1,3) for which |x — 2| < 1, we need to define &
to be the minimum of 1 and . Thus, if we define § = min {1;—1} then |f(x) — f(2)| < €

whenever |x — 2| < §. By definition, f(x) is continuous at x = 2.

(5) Show that f(x) = % is continuous at every real number ¢ > 0.
Solution: Let € > 0 be given. Let us concentrate on the interval |x — c| s% ; that is % <x<

% . Clearly x # 0 in this interval. Then

f—f@l=|-3

c—X

cxX

c?e
< € whenever |x — c| < - -
. . 2 1 1
We define § = min {%%} Then for all x such that |x — ¢| < &, |; — ;| < €. Hence,

limx_,cl = 2 and the function flx) = 2 is continuous at each ¢ > 0.
X c X

Exercise 1

1. Evaluate each of the following limits.

2_ - .
(8) limy_p (x* — 3x% + 20 +4) () lim,y 55 (0) limyoo o2 (d) limy o S

sin7x
. 1 . 1 . x%-9 . sin 2x+sin 3x ) NEY)
(e) hmx—)Z X2_24 (f) hmx—)Z X2—4 (g) 11rnx—>3 -3 (h) llrnx—>0 - () hmx—>4ﬁ
() lim 3x2+4+4x42
J X7% 6x6+3x2+8

2. Suppose that a function f is defined and continuous on some open interval (a, b) and
a < ¢ < b. Prove that
(i) If f(c) > 0, then there exists some § > 0 such that f(x) > 0 whenever
c—0<x<c+6é.
(i) If f(c) < 0, then there exists some § > 0 such that f(x) < 0 whenever
c—6<x<c+H39.

13
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Theorem_ 1.3.5 (Intermediate Value Theorem): Let f:[a,b] » R be continuous.

Suppose that f(a) < f(b). Then for any v with f(a) < v < f(b) there exists c € (a, b) such
that f(c) = v.

Example: Let f:[0,1] > R be given by f(x) =x?>+6x+1, x €[0,1]. Can we solve
f(x) =27

Solution: The answer is yes. Since f(0) =1, f(1) =8 and 2 € (1,8), there is a number
c € [0,1] such that f(c) = 2 by the Intermediate Value Theorem.

14
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§ 2.0 DIFFERENTIATION

We begin this section by reviewing the concept of differentiation for functions of one

variable.

Definition 2.1.1: Let f:D c R - R and let x, be an interior point of D. (A point x, € D is

an interior point of D means there is an r > 0 such that (x, —r,x, +7r) € D.) Then f is
differentiable at x, means there is a number, denoted by f'(x,) such that

fQO)—f(x0) — fl(xo)

lim,, po

fx+h)=f(x) '
LT = f1(x)

exists. The number f'(x,) is called the derivative of f at x,.

or equivalently, lim;_,,

Geometrically, the derivative of a function at x, is interpreted as the slope of the line
tangent to the graph of f at the point (x,, f(x,)). Not every function is differentiable at
every number in its domain even if that function is continuous and this is stated in the

following theorem.

Theorem 2.1.2: If f is differentiable at c, then f is continuous at ¢. The converse is false.

Proof: Suppose that f is differentiable at c. Then
fx)-f(c) fl(c)

X—C

lim,_,,
and f'(c) is a real number. So,
lim, e £00) = limy [(F2LD) (x - o) + £(0)]
= lim,_,, % limyL.(x —¢) + f(c)

=f'(c) 0+ f(c)
= f(0).
Therefore, if f is differentiable at c, then f is continuous at c.
To prove that the converse is false, we consider the function f(x) = |x|. This

function is continuous at x = 0. But

f1G0) = limyo |[5]

(Ix+h|=]xD(|x+h|+]|x|)
h(lx+h|+|x])

= limy,_,

— lim x2+2xh+h2%—x2
- h=0 " (lx+h|+]x])

_ lim 2x+h
- h=0 |3+ h||x|

15



www.crescent-university.edu.ng

1 forx>0
= -1 forx <0
undefined forx = 0

Thus, |x| is continuous at 0 but not differentiable at 0. m

Theorem 2.1.3: Suppose that functions f and g are defined on some open interval (a, b)

and f'(x) and g'(x) exist at each point x € (a, b). Then

i) F+9) @ =Ff'(x)+g ) (The Sum Rule)

i) (F-g')=f"x)—-g (The Difference Rule)

i) (kf)'(x) =kf'(x), for each constant k. (The Multiple Rule)
iv)  (Fr9) (@) =f'(x) gk +f(x) g'(x) (The Product Rule)

£\’ _gQf' )-f)g' (x) . :
) (§) o =TT itg(x) £ 0 (The Quotient Rule)

(I) (f + g)r(x) — hmh—)O [f(x+h)+g(x+2)]—[f(x)+g(x)]

gx+h)—g(x)

fG+h)—-f(x)
h h

= limh_,o + limh_,o

=f'(x)+g'(x).

(ii) (]c _ g)l(x) — hmh_)o [f(x+h)—g(x+:)]—[f(x)—g(x)]

f(x+h’3—f(x) im,, . 8GN -9()

= 11rnh—)O h—-0 h

=f'(x)—g'(x).

(i) (kf) () = limy,.,o LEH O

fx+h)—f(x)

=k- limh_,o h

=k-f'(x).

(iv) (f - 9)'(x) = lim,,_,, f(x+h)g(x+:)—f(x)g(x)

= limy,o 7 [(f(x + h) = F()) g (x + 1) + f(x)(g(x + h) — g(x))]
= limy,_,, w - limy,_, g(x + h) + f(X) limy,_, gx+h)—g(x)

h
=g+ f(x)g'(x).

16
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AN — i 1[f&xth) _ f)
(v) (g) (G0) = limno 7 [70550 ~ 5

1 f(x+h)'g(x)—g(x+h)f(X)]
h g(x+h)g(x)

= hmh_,o

= ooz Mneo [
p— 1 . ! -_ '
= [ @9 - f0g @]

_ 9f ")-f(x)g' (x)
(g(x))?

(x+h)—f(x) (g(x+h)- )
(fx+hfx)g(x)_f(x)gx+hg(x)]

,ifg(x) #0 m

Remark
To emphasis the fact that the derivatives are taken with respect to the

independent variable x, we use the following notation, as is customary:

() = &
f1G) = = (F).
Based on Theorem 2.1.3 and definition of the derivative, we get the following

theorem.

Theorem 2.1.4:

(i) %(k) = 0, where k is a real constant

(ii) %(x”) = nx""1, for each real number x and natural number n.
(iii) %(sinx) = cos x for all real numbers (radian measure) x.

(iv) %(cos x) = —sinx V real numbers (radian measure) x.

(V) %(tanx) = sec?x V real numbers x # (2n + 1)% ,n EZ.

(vi) %(cotx) = —csc? x V real numbers x # nm,n € Z.

(vii) ;—x(secx) = secx tanx V real numbers x # (2n + 1)% ,n € 7.

(viii) %(cscx) = —cscxcotx V real numbers x # nm,n € Z.
Proof
() 400 =limyo==
= limh_,og
=0

17
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(ii) For each n € N, we get

= limyo 3 [x7 + na"h + 2ED 22 4 p™ — x%| (Binomial exp.)

= limy_,q [nx"_1 + 20D pn-2p 4y h"_l]
21

n-—1

(i) By definition, we get

sin(x + h) — sinx
h

sinx cos h+cos x sin h—sinx
h

. sinh . 1-cosh
= limy_, [cos x———sinx (T)]

cosx*1—sinx-0

Tx (sinx) = }Llir(l)

= limh_)o

= COS X
. . sinh . 1-cosh
since limy,_,, — = 1, limy — = 0.

cos(x+h)—cosx

. d .
(iv) a(cos x) = limy_q -

. 1 . :
= limy,_,o~ [cos x cos h — sin x sin h — cos x]

— i . sinh 1-cosh
= 1My, —SlnX'T—COSX T

=—sinx-1—cosx-0

= —sinx.

(V) %(tanx) =2 (ﬂ)

dx \cosx

__cosx(sin x)' —sin x(cos x)r

(cosx)?

cos? x+sin? x
- cos2x
_ 1
" cosZx

=sec?x, x # (2n+1)§, n €Z.

(vi)  Using the quotient rule and part (iii) and (iv), we get

d d fcosx
—(cotx) = —(=
dx dx \sinx

18
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__ (sinx)(cos x)' —(cos x)(sinx)r
o (sin x)?

__ —sin®x-cos?x
(sinx)?2
_ -1

" (sinx)2

=—csc’x ,x #nm,n € Z.

(Vii) :—x(seCX) = :_x(colsx)

__ (cosx)-0—1-(cosx)/

(cosx)?
_ 1 sinx
CoOsXx Ccosx

=secxtanx , x # 2n+ 1)%, n € Z.

d d 1
(viii) a(csc x) = — (Sinx)
sinx:0—1-(sin x)s
(sinx)?2

1 —COSs X

sinx sinx

= —cscxcotx ,x #Fnm,n€Z [ ]

2.1.5 Examples
1. (a) Show that f(x) = x? is differentiable everywhere.

2_ 2
Solution: lim,._,,,_ % = lim (x + x,) = 2x,. Hence f'(x,) exists and equals 2x, .
—A0

X=X

(b) Show that f: R\{0} - R, f(x) = % is differentiable at x, # 0.

1 1

o fOO=f(X0) _ i x_xg
Solution: lim,._,,, pves = limy_y, e
Xp0—X

s XX

= limy_,y, =g

In the last step, we use the fact that i is continuous at x, # 0.

(c) The function f(x) = |x| is not differentiable at h = 0.

o fO+R)-f©) _ . |hl _ . R
Solution: limy, g+ = —— = lim == lim =1,
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FOHM=FO _ i M i = g

limy,_,o-
h-0 h h—0— h hoot h

Hence, lim,,_,, w does not exist and f is not differentiable at 0.

2. Compute the following derivatives:

(i) j—x(5x3 —3x2+2x +10) (i) ;‘—x(4 sinx — 3 cosx) (iii) j—x(x sinx + x2 cos x)

(iV) i(x3+1)
dx \x2+4

Solution:

; 4 2,3 _ 2,2 —cd3y_29% (.2 a
(i) dx(Sx 3x +2x+10)—5dx(x) de(x)+2dx(x)+0

= 15x% — 6x + 2.

. d . _ad L d
(ii) — (4sinx —3cosx) =4 - (sinx) — 3 — (cosx)
= 4 cosx — 3(—sinx)

=4cosx + 3sinx .

(i) Using the sum and product rules, we get

d d
- ; 2 —_ ; — (52
dx(xsmx+x cosx)—dx(x51nx)+dx(x CoS x)

-2 ; 4 (g 4 (2 24 ]
= [dx (x) sinx +x— (smx)] + [dx (x*)cosx + x - (cosx)
= 1sinx + x cosx + 2x cos x + x%(— sin x)

=sinx + 3xcosx —x?sinx .

d d
(v Z(52)= (2 +4) 1 (x° +1)=(x* +1) F(x? +4)
dx \x“+4 (x2+4)2
_ (o) ()0

(x2+4)?

_ 3x*-2x3+412x2-2x
(x2+4)2

Exercise 2

1. From the definition, (a) prove that ;—x(x) =1
(b) prove that - (x®) = 32

2. Compute the derivative % (3cotx + 5cscx + 20)
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2.2 The Chain Rule

Suppose we have two functions, u and y, related by the equations: u = g(x) and
y=f@). Then y=(fog)(x) = f(g(x)). The chain rule deals with the derivative of the

composition and may be stated as the following theorem.

Theorem 2.2.1(The Chain Rule): Suppose that g is defined in an open interval I

containing ¢, and f is defined in an open interval J containing g(c), such that g(x) is in J
for all x € I. If g is differentiable at ¢, and f is differentiable at g(c), then the composition

(f o g) is differentiable at ¢ and (f o g)'(x) = f'(g(c)) - g'(c). In general, if u = g(x) and

_dy du

— ay
y = f(u), then T 1 T

Proof: Let F be defined on J such that

fw)—£(g(c)
F(u) = u-g(c) if u# g(c)
f'(g(©) ifu=g(c)

since f is differentiable at g(c)

fw-rg()

limu_)g(c) F(U,) = limu_,g(c) u—g(0)

= f'(g(c))
= F(g(c)
Therefore, F is continuous at g(c). By the definition of F, f(u) — f(g(c)) =Fw)(u—-g()

forallu € J. Foreachx € I, welety = g(x) on I. Then

(]c ° g)l(c) = lim (fog)(x;:ifog)(C)
x—>cC
— lim f90))-f(g(©)  gx)-g(©)
x-c gx)—-g(c) x—c

= lim F(u) - lim £2=9©
u-g(c) x—C

=f'(g(c)) - g'(c)

It follows that f o g is differentiable at c. The general result follows by replacing ¢ by the

X—C

independent variable x. This completes the proof.

2.2.2 Examples

1.Llety=u?+1andu =x3+4. Then Z—z = 2u and Z—Z = 3x?2 . Therefore,

dy _dy du

92 202 — 2 (3
= dx—Zu 3x° = 6x°(x° + 4).

Using the composition notation, we get
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y=x3+4)*+1=x°+8x>+17
and Z_Z = 6x° + 24x? = 6x%(x3 + 4).
Using (f ° 9)'(x) = f'(g(x)) - g’ (x), we see that (f e g)(x) = (x> + 4)?> + 1 and
(feg) (@) =[f"(g(x)g'(x)
=2(x3+4)-(3x%)
= 6x2(x3 +4).

2. Suppose that y = sin(x? + 3).

We letu = x2 + 3, and y = sinu . then

dy _ dy du
dx  du dx
= (cosu)(2x)

= (cos(x? + 3)) - (2x).
PP: Evaluate Z—Z if y = (cos(3x + 1))°.

2.3 Differentiation of Inverse Functions

One of the applications of chain rule is to compute the derivatives of inverse
functions.
Theorem 2.3.1: Suppose that a function f has an inverse, f~1, on an open interval I. If
u = f~1(x) then

. du _ L
O & m
(i)  (FH(x) = —— :

) - W
Proof: By comparison, x = f(f ~1(x)) = x. Hence, by the chain rule

1=2=F(F1@) - (F)'(x)
and (f71)'(x) =

_r — f-1 i u_
ok In the u = f~*(x) notation, we have = 7@
2.3.2 Examples

(1) Letu = arcsinx, -1 < x <1 and —g <u< g Then x = sinu and by the chain rule, we

__dx _ d(sinu) du

get 1

T odx du dx
du

=cCcosu-—

dx

22
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du 1
= — =
dx cosu
d . 1
Therefore, — (arcsinx) = —f<u<I,
dx cosu 2 2
_ 1
" Vi-sinZu
1
= -1<x<1
i T SrS

d . 1
Thus, a(arc sinx) = — ,—1 < x < 1. We note that x = +1 are excluded.

(2) Letu = arcsecx, x € (—oo,—1]U [1,0) and u € [O,g) U (g,n). Then, x = secu

d d
1=2= secutanu-—u, ueE (O,E) U (E,n)
dx dx 2

2
du 1 T T
Sf__ e (08)u(Z )
dx secutanu 2 2
_ 1
|secu|VsecZu—1

1
= v X € (—o0,—1) U (1, ).

Thus, %(arc secx) = x € (—o0,—1) U (1, ).

1
|x|Vx2-1"’

Theorem 2.3.3 (The Inverse Trigonometric function): The following differentiation

formulae are valid for the inverse trigonometric functions:

. d . goN_ 1
(i) dx(sm x)—\/—n, 1<x<1.

-1

. d _1 _ -1
(i) ™ (cos™x) = =, —1<x<Ll
d 1 3
(iii) ™ (tan™ x) = —— —0<x<®
(iv) ZL(cotlx)=—=,—0<x<oo
dx 1+x2 "’
2 secly) = —1 —
(V)  Glecx) =rme —o<x<-lorl<x <o
N L(escly) = — _
(Vi) or(escTla) == —o<x<-lorl<x<co

Theorem 2.3.4 (Logarithmic and Exponential functions)

(i) ;—x(lnx) = %for allx >0 [Note: Inx = log, x]
.. d _

(i) — (%) = e* for all real x

(iii) ;—x(logbx) =ﬁfor allx>0andb # 1

(iv) = (b*) = b*(Inb) forall real x,b > Oand b # 1

23



www.crescent-university.edu.ng

(V) = @@ = @)@ [v' @) Inu) + v(x) u((;))
Proof: (i) and (i) left as exercise.

(iii) By definition, forall x > 0,b > 0and b # 1, log, x = :E—z . Then

—(logbx)— ((lnb)lnx)
= (m5) >
_ 1
xlnb ’

(iv) By definition, for real > 0,b > 0 and b # 1, b* = e*!"?_ Therefore,
a — 4 (pxInb
dx (bx) T dx (ex ! )
= gXInb -:—x(x Inb)  (by applying the chain rule)
=b*Inb .

a4 v(x) — 4 (,v(x)In(u(x))
(V) = @E)® ={e }

= V(@) In(u(x)) {17 (x) ln(u(x)) +v(x) u (x)}

= (u(x))’® {v () In(u(x)) + v(x) = (X)}

Example
1. Lety =log;q(x? + 1). Then

2 (logp(a? + 1) = = (H=)

dx In10

1 1
=5 (77 2%)
In10 \x2+1

_ 2x
" (x2+1)In10

2. Lety = e***1. Then, by the chain rule, we get

d 2
2= ex*H1. 0y
dx

2
= 2xe* *1

3. Lety = 10(x*+2x+1) By definition and the chain rule, we get

2 = 100*+2+1) - (In10) - (3x% + 2).

24



Theorem 2.3.5 (Differentiation of Hyperbolic functions)

: d, . _

(i) — (sinhx) = coshx
. d o

(i) — (coshx) = sinhx

(iii) :—x(tanhx) = sech?x

' 4 - _ 2
(iv) —(cothx) = —csch®x
(V) :—x(sech x) = —sechx tanh x
(vi) :—x(csch x) = —cschx cothx .
Proof
i 2 (s — 2 (Lepx _px
(i) ™ (sinhx) = ™ (2 (e*—e ))

= %(ex — e *(-1))
= %(ex +e7%)

= coshx .

(i) = (coshx) == (g (e* + e_x))
=3 (e* +e*(-1)
= %(ex _ e—x)

= sinhx .

dx \eX+e—*

(ii) < (tanhx) = ix(‘)

_(e*+e X)(e*+e ) —(e¥—e ¥)(e¥—e™¥)
- (e*+e~%)?

_ 4
T (eX+e~X)2

- (=)
~ \eX+e*

= sinh?x .

. d d [e*+e™*
(iv) a(coth xX) = E(e_) , X #0

x_e—x

_ (e¥—eX)(e¥—e¥)—(e*+e ) (e*+e™¥)
- (eX—e—%)2 ’

x#0

25
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= _ x%0

- (eX—e—%)2’

=—( 2 )2, x#+0

ex_e—x

= —csch?x , x # 0.

(V) ;—x(sechx)=;—x( 2 )

eX+e™X
_ (e*+e*)-0-2(e*—e7%)
- (e*+e=%)2

=2 e¥—e™*

eX+e™X* eX+e™X

= —sechxtanhx .

(i) %(cschx)=i( 2 )

dx \e*X—e™*
__ (e*—e™*)0-2(e*+e™) 0
- (eX—e—%)2 y X F
-2 eX+e™*
= L x#0

eXte X eX—e=x'’

= —cschxcothx, x#0.

Theorem 2.3.6 (Inverse Hyperbolic Functions)

() = (sinh™x) = =

V1+x2
(ii) ;l—x(cosh‘1 x) = ﬁ , x>1
(i) < (tamh™x) =—=, |x| <1

Proof: Exercise.

2.4 Implicit Differentiation

In an application, two variables can be related by an equation such as (i) x2 + y2 = 20
(i) x3 + y3 = 4xy (i) siny + cos 3y = sin2y. In such cases, it is not always practical or
desirable to solve for one variable explicitly in terms of the other to compute derivative.
Instead, we may implicitly assume that y is some function of x and differentiable each term
of the equation with respect to x. Then we solve for y’ noting any conditions under which

the derivative may or may not exist.
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Examples
. dy .
(1) Find = if x2 +y? = 20.
Solution: Assume that y is to be considered as a function of x, we differentiate each

term of the equation with respect to x.
Ly L vy =L
= () + = (y?) = - (20)
2x + 2y (Z—z) =0

day

X .
il provided y # 0.

2) Compute L for the equation x siny + cos 3y = sin 2y.
dx

. d . d _d
Solution: — (xsiny) +—(cos 3y) = ——(sin2y)

[(Z—i) (siny) +x (;—x (sin y))] + (—3sin3y) Z—i = (cos 2y) (2 Z_Z)

= siny + x(cosy)j—z— 3sin(3y)3—z = —siny
= [xcosy — 3sin3y — 2c052y]3—z= —siny
d_y siny

= - : whenever xcosy — 3sin3y — 2 cos 2y # 0.
dx X cosy—3sin3y—2cos2y

Using the definition: Let f:D < R - R and let a be an interior point of D, then f is
differentiable at a means there is a number, f'(a), such that
fe)-fl@)-(x-a)f'(a) _ 0

[x—al

lim,_,q ;

We now give the definition of differentiability for functions of several variables as
follows:

Definition 2.5.1: Let f: D ¢ R™ - R and let P, be an interior point of D. (A point P, € D is

an interior point of D mean there isanr > 0 such that {P € R*; |P - P, <r|}c D.) Then f

is differentiable at P, means there is a vector, denoted by f'(P,) for now, such that

f(P)=f(Po)=(PoP)f"(Po) _ 0

lim
PPy |P—P|

For functions of two variables, the definition becomes the following.
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Definition 2.5.2: Let f:D c R? - R and let (x,,y,) be an interior point of D. Then f is

differentiable at (x,, y,) means there are two numbers f; (x, ¥o) and f;(x,, yo) such that

i FOey)—f(x0,¥0)—(x—x0) f1(x0,¥0)—(V=Y0) f2(x0,Y0) =0
1M (5, ) (x0,¥0) \/(x—x0)2+(y—y0)2 - Y

Here, we are dealing with partial derivatives and we used to denote partial derivatives as
7] a
fiGy) =2 y) = - f(0y) = fulx ).
For example: Let (x,y) = \/y%2 —x2 = (y? — x2)"/2 . Then
fiey) = —x(y? —x)"2and f,(x,y) = y(y? —x) 2.

Implicit function

For a given function f(x,y) with f =0 and Z—ﬁio at the point (x,,y,), there

corresponds a unique function y(x) in the neighbourhood of (x,, y,).
Let us consider the equation

fGoy,u,v) =0 (1)

g(x,y,u,v) =0 (2)
Under certain circumstances, we can unravel equations (1) and (2), either algebraically or
numerically, to form u = u(x,y), v = v(x,y). The conditions for the existence of such a
functional dependency can be bound by differentiation of the original equations; for
example, differentiating equation (1) gives

df=g—£dx+g—£dy+z—£du+g—’;dv=0 (3)

Holding y constant and dividing by dx, we get

of , 0f ou |, 9f v _
ax du dx v ox (4)

Operating on equation (2) in the same manner, we get

dg , 9gou |, dgodv _ (5)
x du dx v dx

Similarly, holding x constant and dividing by dy, we get
of , 0fou  9f dv _
oy Y ouay Tavay = ©
dg , 9godu , g dv _
ay touay Tovay - 7

Equations (4) and (5) can be solved for Z—z and Z—Z , and equations (6) and (7) can be solved

9 9 . , 9 9 . .
for ﬁ and é by using the well known Crammer’s rule. To solve for == and == , we first write

equation (4) and (5) in matrix form:
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af of u . af
ou OJOv ox | _ dx
dg dg aw | | _ag (8)
ou Jv dx ax

Thus, from Cramer’s rule, we have

of af of of
ax v du  ox
dg adg 9(f.9) dg dg 9(f.9)
ou “ax_ovl _ __ axw) . v du___ox 0wy (9)
dx of off — 99 > dx of of 9(f.9) -
ou dv a(u,v) ou Odv a(u,v)
9g 9y 9g 9g
u v u ov
.. . . ou v
In a similar fashion, we can form expressions for % and %
of of of of
& ﬁ‘ ‘a &
dg dg a(f.9) dg _dg a(f.9)
ou _ 1oy avl _ _ o) . w _lou "oyl _ _ awy (10)
oy oL ] ~ T G oy oL ] — T Ga -
ou O0v a(u,v) ou O0v a(u,v)
dg Odg ag 9g
u v ou v

Here we take the

6_f
_ | ou
J=\or
ou

Jacobian matrix / of the transformation to be defined as

of
v
99
v

(11)

This is distinguished from the Jacobian determinant |/|, defined as

of of

— _M_ Ju OJv
Ul =det=515 =00 o).

du OJv

(12)

If |J] # 0, the derivatives exist, and we indeed can form u(x,y) and v(x,y). This is the

condition for existence of implicit function conversion.

2.5.4 Example

If x+y+ut4+u+v=0......... (i)

........................... (il

Solution: Here we have four unknowns in two equations. In principle, we could solve for

]
xy+uv=1 evaluate ﬁ :

u(x,y) and v(x,y) and then determine all partial derivatives, such as the one desire. In
practice, this is not always possible; for example, there is no general solution to sixth order
polynomial equation as in the case of quadratic equation. So we need to use the method
discussed above to be able to provide the desire solution.
Equations (i) and (ii) are rewritten as
f,yuv)=x+y+ut+u+v=0
29
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Using the formula from equation (9) to solve for the desired derivative, we get

u _
ax
Substituting, we get

ou

ax |4u3+1 1| T u(ud+)-v
v u

of of

of of

dx OJv
9g 9g

dx__dv

du OJv
99 9g
ou OJv

5

y—u

v+u(dud+1)

Note: When v = u(4u3 + 1), that is, when the relevant Jacobian determinant is zero; at

, , N ] :
such points, we can neither determine ﬁ nor ﬁ. Thus, for such points we can not form

u(x,y).

2.5.5 Functional dependence

Let u = u(x,y) and v = v(x,y). If we can write u = g(v) or v = h(u), then u and v

are said to be functionally dependent,

otherwise, functionally independent. If

functionally dependence between u and v exists, then we can consider f(u,v) = 0. So,

af ou
ou 0x
af du
oudy

In matrix form, this is

ou
ox
ou
oy

of ov _
wox
af dv _
oy

dv of
ox ou
ov of
oy ov

- ()

(13)

(14)

Since the right hand side is zero, and we desire a non-trivial solution, the determinant of

the coefficient matrix must be zero for functional dependency i.e.

6_u
ox
6_u
oy

o
ox

av - 0-

ay

Note, since det] = det J7, that this is equivalent to

I =

du Ju
ox dy
dv Ov
ox oy

_o(uy)
T ay)

That is, Jacobian determinant must be zero for functional dependence and |J| # 0 for

functional independence.
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Examples
(1) Determine if u=y+z ()
v =x+2z° (ii)
w=x—4yz—2y? (i)
are functionally dependent or functionally independent.
Solution: The determinant of the resulting coefficient matrix by extension to 3
functions of three variables is

ou du du ou dv ow
ax dy oz 9x ox ox
owrw) _fov v dv| o ov aw -
Gy  |ox oy oz|” |ay @y oy (iv)
ow ow aw| fou v aw
dx Jdy 0z dz 0z 0z
0 1 1
=1 0 —4z-4y (V)
1 4z —4y
=Dy - (D +2)) + (DH(42) (vi)
=4y —4y—4z+ 4z (vii)
=0 (viii)

So, u, v, w are functionally dependent.

In fact, w = v — 2u?.

(2) Given that f =e* +2x, g =xy+ y? +siny. Determine whether f and g are
functionally dependent or not.
Solution: Exercise

2.5.6 Maxima and minima

Consider the real valued function f(x), where x € [a,b]. Extrema are at x = x,,,
where f'(x,,) =0, if x,, € [a, b]. It is a local minimum, a local maximum, or an inflection
point according to whether f''(x,,,) positive, negative is or zero, respectively.

Now consider a function of two variables f(x,y), with x € [a,b],y € [c,d]. A

necessary condition for an extremum is
af of
a(xml ym) = a (xmr ym) =0 (1 7)

where x,,, € [a,b], y,, € [c,d]. Next we find the Hessian matrix:

o2 o
0x2  9xdy

H=| 0, 2y (18)
dxdy  0y?
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We use H and its element to determine the character of the local extremum:
. 321\ [02f
(i) f is a maximum |f — < 0 — < 0, and 2L o ay (ﬁ) (W)

i azf % (225 (9%
(i) f is a minimum |f —= > 0 — > 0, and y (ﬁ) (ﬁ)

(i) f is a saddle otherwise, as long as detH # 0, and

(iv)  If detH = 0, higher order terms need to be considered.

Examples
(1) Consider extrema of f = x? — y2.

Solution: Equating partial derivatives with respect to x and y to zero, we get
of

a=2x=0 (I)
of _ o _ .
3 = 2y =0 (i)

This gives x = 0, y = 0. For these values we find that

;o

_ | ax2 oaxday |\ _ (2 0

H= r o _(O _2). (iii)
dxdy  0y?

Since detH = —4 # 0, and and have different signs, the equilibrium is a

saddle point.

(2) Find the local maximum, local minimum and saddle points (if any) of
flo,y) =x*+y*—4xy + 1.
Solution: First f, = 4x* — 4y and f,, = 4y® — 4x. Now we proceed to solve
4x3 —4y =0 and 4y3—4x =0 for the critical points. The two equations are
equivalent to y = x® and x = y3. Substituting one into the other, we obtain
x%—x=0.Thatis x(x + 1)(x — 1)(x? + 1)(x* + 1) = 0. Thus the real solutions are
x = 0,—1,1. Therefore, the critical points are (0,0),(—1,—1), and (1,1). To apply the
second derivative test, we compute the second order partial derivatives.
fex = 12x%, . f, = —4. Thus D(x,y) = fixfyy —fzxy = 144x?%y? — 16.
At (0,0), D(0,0) = —16 < 0. Hence, f has a saddle point at (0,0). At (—1,-1),
D(—1,-1) =128 >0 and f,,(—1,—1) =12 > 0. Hence, f has a local minimum at
(=1,-1). At (1,1), D(1,1) =128 >0 and f,,(1,1) = 12 > 0. Hence, f has a local

minimum at (1,1). [ |
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Lagrange’s Multiplier

range multipliers- Simplest case

Consider a function f of just two variables x and y. Say we want to find a stationary

of the form f(x, y) subject to a single constraint of the form g(x,y) = 0.

(i)
(ii)

(i)

Introduce a single new variable A- we call A a Lagrange multiplier.

Find all sets of values of (x,y,4) such that Vf = AVg and g(x,y) = 0 where

— (9L F\ig O _ 499 of _ 4,99 _
Vf = (6x'6y) .. ax_)lax and ay_lay and g(x,}’)—O.

Evaluate f(x,y) at each of these points. We can often identify the
largest/smallest value as the maximum/minimum of f(x,y) subject to the

constraint, taking account of whether f is bounded or unbounded above/below.

Example

1.

Maximize f(x,y) = xy subjectto x + y = 1 i.e. subjectto g(x,y) =x+y — 1.

Solution: Since we have one constraint and so we introduce one Lagrange

o o ., O _ . 29 _ 1909 _
multiplier A. Compute =V ey =X 5 = 1'6y_ 1 and solve the (two + one)
equations

of _ 199 i - :

P Aax l.e. y = A (I)

9F _ 199 -

3 =~ 1y e x=2 (ii)

glx,y)=0 ie. x+y=1 (iii)
Substituting (i) and (ii) in (iii) gives 2A =1i.e. 1 = % so from (i) and (ii) the function
has a stationary point subject to the constraint (here a maximum), at x = % y = %

Find the extreme value of f(x,y) = x? + 2y? on the circle x? + y? = 1.

Solution: f(x,y) is subject to g(x,y) =0 where g(x,y) =x*+y?—1. So we

_ . of _ af _ 99 _ 5. 099 _
introduce one Lagrange multiplier 2. Compute o = 2%, 3y 4y, — = 2x, 3y 2y
and solve the (two + one) equations

of _ ,0g : _ .

pl Aax ie. 2x=A2x ()

of _ 499 . _ .

3y = Aay le. 4y =72y (i)

glx,y)=0 ie. x*+y?=1 (iii)
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Equation (i) = 4 =1 or x = 0; (ii) = either A = 2 or y = 0. So possible solutions are
x=01=2y=41 and y=0,A=1,x=41 where f(0,£1) =2 (max), while
f(£1,0) =1 (min).

Lagrange multipliers- General number of variables and constraints

The method easily generalises to finding the stationary points of a function f with n
variables subject to k independent constraints. E.g. consider a function f(x,y,z) of three
variables x, y, z subject to two constraints g(x,y,z) = 0 and h(x,y,z) = 0, then:

(i) at a stationary point Vf is the plane determined by Vg and Vh

(ii) introduce two Lagrange multipliers, say 4 and u

(iii)  find all sets of values x,y,z, A, u satisfying the five (i.e. 3+2) equations Vf =
AVg +uVh and g(x,y,z) = 0 and h(x,y,z) = 0.

Again consider the general case of finding a stationary point of a function
f (x4, ..., xy), subject to k constraints g, (xq, ..., x,) =0, .., gp(xq,...,xy) = 0.

(i) Introduce k Lagrange multipliers 14, ..., A

(ii) Define the Lagrangian A by

k
Ax, A) = f(xq1, o) X)) — er 9r (X1, ey Xp)
r=1

= f(xli "'!xn) - 2'1.91(-%1' ---:xn) - ){kgk(xli ""xn)-
(i) ~ The stationary points of f subject to the constraints g, =0,..,g, =0 are

precisely the set of values of (x4, ..., x,, 44, ..., 4) at which

oA aA
— = =1, ... —=0,r=1,..,k.
ox; 0,i=1,..,n and a7, ,

Example Find the maximum value of f(x,y,z) = x + 2y + 3z on the curve of intersection
of the plane x — y + z = 1 and the cylinder x? + y? = 1.
Solution: We wish to maximize f(x,y,z) =x+ 2y + 3z subject to the constraints
gx,y,z)=x—y+z—1 and h(x,y,z) = x*+y?— 1. First we have Vf =(1,2,3), Vh =
(2x,2y,0). Thus we need to solve the system of equations (3+2):

VF=AVg+uVh, x—y+z=1, x?+y? =1 .Thatis

1 = A+ 2xu ()

2 =—A+2yu (i)
3 =140 (iii)
x—y+z=1 (iv)
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x2+y? =1 (V)
From (iii), 4 = 3. Substituting this into (i) and (ii), we get x = —% and y = % Note that
u # 0 by (ii) and (iii). From (iv), we have

1 5 7 .
Z—l—x+y—1+;+a—1+z. (VI)

2 2
Using (v), we have (—%) + (%) = 1. From this, we can solve for p, giving u = i?.
Thus, x = —% orx = 22—¢§_9. The corresponding values of y are 52—‘/5_9 —52—\/3_9. Using (vi), the

corresponding values of z are 1+72—‘/2_9,1—%. Therefore, the two possible extreme

2\/2_9, 5@’ 14 7@)
29 29

2v29  5v29 7V29
29 " 29 ) AS

and P2=(—, ,1——).

values are at points P1=(— ” = ~

f(P) =3++29 and f(P,) = 3 —+/29, the maximum value is 3 ++/29 and the minimum
value is 3 — v/20.

We shall now examine more facts about functions of one variable.

2.6 Mathematical Applications

Definition 2.6.1 A function f with domain D is said to have an absolute maximum at c if

f(x) <f(c) VYV xeD. The number f(c) is called the absolute maximum of f on D. The
function f is said have a local maximum (or relative maximum) at c if there is some open

interval (a, b) containing c and f(c) is the absolute maximum of f on (a, b).

Definition 2.6.2 A function f with domain D is said to have an absolute minimum at c if

f(c) < f(x) VY xeD. The number f(c) is called the absolute minimum of f on D. The
number f is called a local minimum (or relative minimum) of f if there is some open

interval (a, b) containing c and f(c) is the absolute minimum of f on (a, b).

Definition 2.6.3 An absolute maximum or absolute minimum of f is called an absolute

extremum of f. A local maximum or minimum of f is called a local extremum of f.

Theorem 2.6.4 (Extreme Value Theorem) If a function f is continuous on a closed and

bounded interval [a, b], then there exist two points, c¢; and c¢,, in [a, b] such that f(c,) is the

absolute minimum of f on [a, b] and f(c,) is the absolute maximum of f on [a, b].
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Definition 2.6.5 A function f is said to be increasing on an open interval (a, b) if

f(x1) < f(x) V x1,%, € (a,b) such that x; < x,. The function f is said to be decreasing
on (a,b) if f(x;) > f(xy) V x1,x, € (a,b) such that x; < x,. The function f is said to be
non — decreasing on (a,b) if f(x;) < f(xy) V x1,x, € (a,b) such that x; < x,. The
function f is said to be non — increasing on (a,b) if f(x;) = f(x,) V x4,x, € (a,b) such

that x; < x,.

Theorem 2.6.6 Suppose that a function f is defined on some open interval (a, b) containing

a number ¢ such that f'(c) exists and f'(c) # 0. Then f(c) is not a local extremum of f.

Proof: Suppose that f'(c) # 0. Let e = %lf’(c)l. Then € > 0. Since € > 0 and

f’(C) — limx—>c f(x;—f(c)

—-C

there exists some § > 0 such thatif 0 < |x — ¢| < §, then
Fx)—1(c) ' 1,
ELO — o) <51 )
—2F @ < 2O pre) <210
F1©) =21F' ©l <O < r1(0) + 21 (o).
The following three numbers have the same sign, namely, f'(c), f'(c) — % |f'(c)], and

f'(c) +%|f’(c)|. Since f'(c) > 0 or f'(c) < 0, we conclude that

0 <f(x)—f(6) or f&)-f(c)

X—C X—C

<0 V xsuchthat0<|x—c|<?§.

Thus,ifc -6 <x; <c<x, <c+6,theneither f(x;) < f(c) < f(x,) or

f(x1) > f(c) > f(xy). It follows that f(c) is not a local extremum. m

Theorem 2.6.7 If f is defined on an open interval (a,b) containing ¢, f(c) is a local

extremum of f and f'(c) exists, then f'(c) = 0.

Theorem 2.6.8 (Rolle’s Theorem) Suppose that a function f is continuous on a closed

and bounded interval [a, b], differentiable on the open interval (a, b) and f(a) = f(b). Then

there exists some ¢ such thata < c < b and f'(c) = 0.
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Proof: Since f is continuous on [a, b], there exist two numbers ¢; and ¢, on [a, b] such
that f(c;) < f(x) < f(c;) V x€a,b]. (Extreme Value Theorem) If f(c;) = f(c,), then

the function f has a constant value on [a,b] and f'(c) = 0 forc = %(a + b). If

f(c1) # f(cy), then either f(cy) # f(a) or f(cy) # f(a). But f'(c;) =0 and f'(c;) =0. It
follows that f'(c;) = 0 or f'(c,) = 0 and either ¢; or ¢, is betweena and b. =

Theorem 2.6.9 (The Mean Value Theorem) Suppose that a function f is continuous

on a closed and bounded interval [a,b] and f is differentiable on the open interval (a,b).

Then there exists some number ¢ such that a < ¢ < b and

f(b)-f(a)
[0 — f (o).

Proof: We define a function g(x) that is obtained by subtracting the line joining (a, f(a))
and (b, f (b)) from the function :

90 = £() - [(2LD (x — a) + £ ()]
The g is continuous on [a, b] and differentiable on (a, b). Furthermore, g(a) = g(b) = 0. By

Rolle’s Theorem, there exists some number ¢ such that a < ¢ < b and

=g'(c)
(o) — f(b) f(a)

Hence,

£(b)- Z( ) = f'(c) as required . m

Theorem 2.6.10 (Cauchy — Mean Value Theorem) Suppose that two functions f and

g are continuous on a closed and bounded interval [a,b], differentiable on the open
interval (a,b) and g'(x) # 0 for all x € (a,b). Then there exists some number c in (a, b)
such that

fb)-f(@) _ f'(©)
9b)-g(@) g'(©)"

Proof: We define a new function h on [a, b] as follows:

h(x) = f(x) — f(a) — L2 (5(x0) - g(a)).

gb)-g(a)
Then h is continuous on [a, b] and differentiable on (a,b). Furthermore, h(a) = 0 and
h(b) = 0. By Rolle’s Theorem, there exists some c in (a, b) such that h’'(c) = 0. Then

' 1 f)-f
0= () =f"() =22 ' (c)
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f)-f(@) _ f'(©)
gb)-g(@)  g'(c)

and, hence, as required. m

Theorem 2.6.11 (L’Hospital Rule, % Form) Suppose f and g are differentiable and

g'(x) # 0 on an open interval (a,b) containing ¢ (except possibly at c). Suppose that

')
(%)

= L, where L is a real number, oo or —oo.

Then
llmf() lim f’(x)—L.

x-cdXx)  x-cg'(x)

Proof: We define f(c¢) =0 and g(c) = 0. Let x € (¢,b). Then f and g are continuous on
[c, x], differentiable on (c,x) and g'(y) # 0 on (¢, x). By the Cauchy Mean Value Theorem,
there exists some y € (¢, x) such that

f@ _ f@-£©) _ f'®)
gx)  g-g© g

Then
f(x) )
—_— = 1 _— =
x—ct g(x) yg?*' g o
Similarly, we can prove that
lim fx _

x—c~ g(x)

Therefore,

hmf(x) imf @) _ L.

x-cdx)  x-cg'(x)

Note: Theorem 2.6.11 is also valid for the case when lim,._, . f(x) = o or — o and

lim,_. g(x) = 0 or — o

Example: Find each of the following limits using L’'Hospital rule:

Noy. .y 7. SIN3Xx ..., . tan2x . . . X
(I) ,lcl_r,r} x—1 (“) }g%ﬁ (“I) glcl_rgtan3x (IV) chl_r)r(l) x (V) 3lcl_r>% sinx (VI) }cl—>0 x

2x*—6x3+x2%+3 sinx 1-cosx

(vii) limx In x

x-0
Solution:
. . 2x*—6x34+x%+3 . 8x3-18x2+42x 3 2 .
()  lim 2SS gy IR g(1)3 — 18(1)2 4 2(1) = —
x—-1 x—1 x-1 1
(“) li sin 3x — i 3cos3x _E

x—0 sin 5x x—0 5C0s5x 5
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. tan2x . 2sec:x 2
lim =lim—— ==
x—0 tan 3x x—0 3seccx 3

. sinx . COSx
lim = lim =1
x—0 X x-0 1
. 1
— = lim =1
x>0sinx  x-spcosx

. 1—cosx . sinx
lim = lim =0
x-0 X x—0 1

—

. i Inx oL (i_ T
}Cl_r)r(l)x Inx = ;lcl—%ﬁ = chl_r)r(l) (;_21> = chl_r)r(l)( x)=0

X

Theorem 2.6.13 Suppose that two functions f and g are continuous on a closed and

bounded interval [a, b] and are differentiable on the open interval (a, b). Then the following

statements are true:

If f'(x) > 0 for each x € (a, b), then f is increasing on (a, b).
If f'(x) < 0 foreach x € (a,b), then f is decreasing on (a, b).
If f'(x) =0 for each x € (a, b), then f is non — decreasing on (a, b).
If f'(x) <0 foreach x € (a, b), then f is non — increasing on (a, b).

If f'(x) =0 for each x € (a, b), then f is constant on (a, b).
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§ 3.0 TAYLOR SERIES
The Taylor series of y = f(x) about the point x = x, is define as
FQ) = F o) + (= %) (o) + EZ2 £ (o) + 2 101 (gg) o oo EZEO L0 ()

(3.0.1)

We note that Maclaurin’s expansion is a special form of Taylor series about x, = 0.

Theorem 3.1 (Taylor’s Theorem) Let f: [a, b] - R be n times differentiable on [a, b]

with a < ¢ and its nth derivative f™ is also continuous on [a, b] and differentiable on
(a,b). Let x4 € [a, b]. Then, for each x € [a, b] with x, # x there exists ¢ between x and x,

such that

FG) = Flto) + Ty o8 (= )+ Lm0 (o — sy,

The second term on right hand side is called Taylor series and the last term is called
Lagrange remainder.

3.2 Examples
(1) Using Taylor series, expand the function f(x) = 2x3 + 4x? + 3x + 10 around the point

XO=2.

Solution: Recall that £ = £) + r = x0)f (o) + E22 £/ () + S22 7 () 4 oo+ S22 F 0 (o) oo

(16).

(x— 2) (x— 2)

So, f(x) =48+ (x —2)(51) + (40) + ——

(2) Find a Taylor series of y(x) about x = 0 if y(x) =

(1+x)‘1

Solution: Direct substitution reveals that the answer is

_ (q)(ql)z (q)(ql)(qz)g
y(x)=1—qx + - + ” + -

It is possible to use Taylor series to find the sums of many different infinite series.
The following examples illustrate this idea.

(3) Find the sum of the foIIowing series:
Yome 0 —=1+= + + o +
Solution: Recall the Taylor series for e*:

1 1 1 1
1+-x+-x*+_-x*+-x*+..=¢*
TRRPY 31 4!
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The sum of the given series can be obtained by substituting in x = 1:

1 1 1 1
l1+—+=-+-+-+-=e.
1! 2! 3! 4!

(4) Find the sums of the following series:

1 1 1 1 1 1 1 1
@1-z+3-3ts— Ol-gHg—g+g—
Solution:
() Recall that x — >+ 2 — 2+ = — - = In(1 + x). Substituting in x = 1 yields

1 1 1 1
1_5+§_Z+E_m_ln(2)

(b) Recall that x — g + § —>+%— = tan™(x). Substituting in x = 1 yields
_i 1 1l an (D) ="
1 sttt tan™ (1) "

This is known as the Gregory — Leibniz formula for .

Limit Using Power series
When taking a limit as x — 0, you can often simplify things by substitution in a power

series that you know. The following examples illustrate the idea.

sinx
x3

(5) Evaluate lim
x—0

Solution: We simply plug in the Taylor series for sin x.

13,1 5 1
(x——x3 topeS =T+ )—x

li = lim—3—= '
xX—> x3 x—-0 x3
3,15 7
_ 1 3 +ax =X +
= 11m 3
x—0 X

(6) Evaluate lim =%

x—0 cosx—1

Solution: We simply plug in the Taylor series for e* and cos x:

1
x2eX ) x2(1+x+5x2+~-~)

cosx—1 ( 12,1 4 1.6 )_
x—0 x-0(1 2x +4!x 6!x + 1
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In(cos x)

(7) Evaluate lim
x—0

xZ
Solution: Using the Taylor series formula, the first few terms of the Taylor series for

In(cos x) are:

1 1
In(cosx) = —=x2 ——x* + -
2 12
Therefore,
12_1 4
lim 2205y T2 T T
x—0 X x—0 X
. 1
= lim (————xz + )
x—0 12
1
= —= n

Limit as x — a can be obtained using a Taylor series centred at x = a.

Inx

(8) Evaluate lim

1
x—0x—1

Solution: Recall that Inx = (x — 1) —%(x —1)? +§(x —1)3— .

Plugging this gives
lim 2% — lim (-1 -2(e-1)2 42 (x-1)3 -
x—0x—1 x50 oY
- ! - i - i - 2 — e
=lim (1= - D +3G -2 =)
=1 -

3.3. Taylor Polynomials
A partial sum of a Taylor series is called a Taylor polynomial. For illustration, the
Taylor polynomials for e* are :
To(x) =1
Ti(x)=1+x

42



www.crescent-university.edu.ng

T,(x) = 1+x+%x2

You can approximate any function f(x) by its Taylor polynomial: f(x) = T,,(x). If you use

the Taylor polynomial centred at x = a.

Definition 3.3.1: (Taylor Polynomial) Let f(x) be a function. The Taylor polynomials for

f(x) centred at x = a are:

To(x) = f(a)

Ti(x) = f(a) + f'(@)(x — a)

() = f(@ + f (@& - ) + 52 &~ a)?
Note: The 1st — degree Taylor polynomial is just the tangent line to f(x) at x = a: T;(x).
This is often called the linear approximation to f(x) near x = a. 2nd — degree = quadratic

approximation.

Example 9:
(a) Find the 5th — degree Taylor polynomial for sin x.

(b) Use the answer in (a) to approximate sin(0.2).
Solution:
(a) This is just to find all terms of the Taylor series up to x°>:
_.,_1 3,15
Ts(x) = x SX X
=x—-x3+—=x°
6 120
(b) sin(0.2) =~ T5(0.2)
= _1 3, 1 5
= (0.2) - (0.2)° + >0 (0.2)

= 0.198669

Exercise 3
1. Evaluate the following limits:
o 1. €OSX—1 oy . x oo 1. sindx oo In(1+4x2) . Inx
(i) }CI_I)% = (ii) }CI_I)T(I)E (iii) }CI_I)I(I)T (iv) }CI_I)I(I)X—Z (V) }Cl_r}ém

2. Find the sum of the given series.
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3. (a) Find the 3™ — degree Taylor polynomial for the function f(x) = Inx centred at
a=1
(b) Use your answer from part (a) to approximate In(1.15) .

4. (a) Find the quadratic approximation for the function f(x) = x°/3 centred at Xo = 4.

(b) Use your answer from part (a) to approximate (4.2)2/3.

5. Find the 4th — degree Taylor polynomial for e™*.
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§ 4.0 INTEGRATION (ANTIDIFFERENTIATION)
The process of finding a function g(x) such that g(x) = f(x), for a given f(x), is

called antidifferentiation.

Definition 4.1.1: Let f and g be two continuous functions defined on an open interval

(a,b). If g'(x) = f(x) for each x € (a, b), then g is called an antiderivative (integral) of f on
(a,b).

Theorem 4.1.2: If g,(x) and g,(x) are any two antiderivatives of f(x) on (a,b), then

there exists some constant C such that

g1(x) = g,(x)+ C .

Proof: If h(x) = g,(x) — g,(x), then
R (x) =g'1(x) — g'2(x)
= f(x) = f(x)
=0 V x€(ab)
By Theorem 2.6.13, part (iv), there exists some constant ¢ such that for all x in (a, b),
€ =hx) = g1(x) — g, (%)
92(x) = g1(x) + C.

Definition 4.1.3: If g(x) is an antiderivative of f on (a, b), then the set

{g(x) + C: C is a constant} is called a one — parameter family of antiderivatives of f. We
called this one — parameter family of antiderivatives the indefinite integral of f(x) on (a, b)
and write [fx)dx = g(x) +C. (C = [ 0dx)

Note that : ([ f(x)dx) = g'® = f(x).

4.1.4 Example: The following statements are true:

xn+1

n+1

: fx6dx=%x7+C

1. [x"dx =

+C, n#+ -1

[\

w

: fidx=lnx+C

N

. [sinxdx =—cosx+C
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5. [sin(ax)dx = %cos(ax) +C
6. [cosxdx =sinx+C

7. [cos(ax)dx = %sin(ax) +C
8. [e*dx=e*+C

9. [e%™dx= ie“x +C

10. [ tanx dx = In|secx| + C

11. [ secx dx = In|secx + tanx| + C

12. [ cscx dx = —In|cscx + cotx| + C

13. [ sec?(ax) dx = %tan(ax) +C

4.2 The Definite Integral

Definition 4.2.1: If f is continuous on [a, b] and L; = Uy = I, then we say that:

(i) f is Integrable on [a, b];

(i) the definite integral of f(x) formx =atox =bisI;

(i)  Iis expressed in symbol, by the equation I = f: f(x) dx;

(iv)  If f(x) = 0 for each x € [a, b], then the area, A, bounded by the curves y = f(x),

y = 0,x = aand x = b, is defined to be the definite integral of f(x) from x = a to

x =b. Thatis, 4 = [ f(x) dx.

(v)  For convenience, we define [ f(x)dx =0, [f(x)dx=— f:f(x) dx.

Theorem 4.2.2: (Linearity) Suppose that f and g are continuous on [a, b] and ¢, , ¢,

constants. Then
() ;G +gG) dx = [ fO)dx + [ g(x) dx
(i) Jy(fG) — () dx = [} f(x) dx — f g(x) dx
(i) [ afdr=c [, f@)dx, [ cg(x)dx =c, [, g(x)dx and

[ lef () + () dx = ¢y [L f(x)dx + ¢ [ g(x) dx

Theorem 4.2.3: (Additive) If f is continuous on [a, b] and a < ¢ < b, then

L7 Fe0dx =[x dx + [ f(x) da.
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Theorem 4.2.4: (Order Property) If f and g are continuous on [a, b] and f(x) < g(x) for

all x € [a.b], then

[P F@) dx < [ g(x) dx.

Proof: Suppose that f and g are continuous on [a,b] and f(x) < g(x) V x € [a, b]. For
each i there exist numbers ¢;, c*;,d;, and d*; such that
f(¢;) = absolute minimum of f on [x;_4, x;],
f(d;) = absolute maximum of f on [x;_1, x;],
g(c*;) = absolute minimum of g on [x;_4, x;],
g(d*;) = absolute maximum of g on [x;_q, x;].
By the assumption that f(x) < g(x) on [a, b], we get
f(c) < g(c*) and f(d;) < g(d™))
Hence,
Ly <L, and Uy < U,.

It follows that

Preodc<gde. =

Theorem 4.2.5 (Mean Value Theorem for Integrals) If f is a continuous on [a, b], then

there exists some point c in [a, b] such that

[} f(x)dx = f() (b - a).

Proof: Suppose that f is continuous on [a, b], and a < b. Let m = absolute minimum of f

on [a, b], and M = absolute maximum of f on [a, b]. Then by Theorem 4.2.4,
1 b b b
m<—[mdx< [ f(x)dx < [/ Mdx=Mb-a)
1 b
And msmfaf(x)deM.
By the Intermediate value theorem for continuous functions, there exists some c such that

f(e)=—=[ f@)dxand [ f(x)dx = f(c)(b—a). Fora=b,take c=a . m

Theorem 4.2.6 (Fundamental Theorem of Calculus, 1st Form) Suppose that f is

continuous on some closed and bounded interval [a,b] and g(x) = f;f(t) dt for each

x € [a,b]. Then g(x) is continuous on [a, b], differentiable on (a,b) and for all x € (a, b),

g'(0) = f(x). Thatis, < [[7 f(O)]dt = f(x).
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Theorem 4.2.7 (Fundamental Theorem of Calculus, 2nd Form) If f and g are

continuous on a closed and bounded interval [a, b] and g'(x) = f(x) on [a, b], then
[ F(x) dx = g(b) — g(a).
We use the notation: [g(x)]2 = g(b) — g(a).

4.2.8 Examples

Compute each of the following definition integrals

T P b4

1.() [, x dx (i) [ sinx dx (i) f_E,Z_rcosxdx (iv) f,° e* dx (v) [ tanx dx (vi) ff cotx dx
(vii) fisecx dx  (viii) f;Tn cscxdx (ix) f, sinhxdx (x) [ coshxdx (xi) [~ dx
M4 4
0 Lea=Ei=[E-E=%
(i)  Jfy sinxdx=[-cosx]f=1—-(-1) =2
(i) f_ggcosxdx = [sinx] _i =1-(-1)=2

(iv) foloex dx =[e*] ) =e'® -1

|sec (§)| =1In2

=1In(1) —In G)

(V) f3tanxdx = [In|sec x|]

T

(vi)  JZ cotxdx = [In]|sinx|]
6

QIANIN cwly

T

(vii) f_ZEsecx dx = [In|secx + tanx]|] %, = ln|\/_+ 1| ln|\/§ — 1|
4 4

3T

(i) fz* cscxdx = [~ In]escx + cotxl
4

. 1 . _ 1 _
(ix)  J, sinhxdx = [coshx] = cosh1l—1

=—ln|\/_ 1|+ln|\/§+ 1|

“'“"‘|:|

(X) f1 coshx dx = [sinhx] ; = sinh 1

(xi)  J;°~dx = [In|x|]% = In(20)

2. Verify each of the following: (i) [ x? dx = [’ x? dx + [, x* dx
(ii) ffxz dx < f14x3 dx
Solution:
. 4 5 5[4 _ 64
(i) fox dx—[3]0—3
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e e[+ S

- (-0)+ (53

64

Therefore,
[Fx?dx = [x?dx+ [ x? dx
0 0 3
- 1
(ii) fx dx—[s] —-5=21
ey x3 4 4 _ 255
Sl e E i g
Therefore,

*x2 dx < [*x3 dx. We observe that x? < x3 on [1,4].
1 1

4.2.8 Integration by Substitution

Many functions are formed by using compositions. In dealing with a composite
function, it is useful to change variables of integration. It is convenient to use the following

differential notation: If u = g(x), then du = g'(x)dx.

Example:

(1) Evaluate the following integrals: (i) [ 2xe**dx (i) J sin(3x) dx (iii) f, 3x cos(x?) dx
(2) Determine the area, A, bounded by the curves y = sinx, y = cosx, x = 0and x = 7.
Solution:

1. () Letu =x2. Then =: = 2x = dx = =. So, we have

[2xe*dx = [ 2x e® (dz)
= [e*du
=e+C
= e’ + (.

(ii)Setu=3x.At=O,u=0andatx=2,u=6.Then%:3 :>dx:dg—u.So,W€
have foz sin(3x) dx = fossinu(i—u)
106
=/, sinudu
_1 6
—5[—cosu]0

49



www.crescent-university.edu.ng

= %(1 — c0s6)
2 4 3
(iii) J; 3x cos(x®) dx = [ cosu(zdu)
_3r.. 4
= 5[51nu] o
= Esin 4,
2

where u = x?, du = 2xdx.

2. We note that cosx > sinx on [O,ﬂ and sinx > cosx on E,n]. Therefore, the area
is given by
Ty, .
A= fo |sin x — cos x| dx
= foz(cosx — sinx) dx + fr (sinx — cos x) dx
4
= [sinx + cosx]g+ [— cosx — sinx]
(I 2 vz, V3
=(F+5-)+(1+5+T)

= 2+/2 square units.

EE

4.2.9 Inteqgration by Parts

The product rule of differentiation yields an integration technique known as
integration by parts. Let us begin with the product rule:

= W) = =
On integrating each term with respect to x from x = a to x = b, we get
[0 @) dx = f) v (B2) dx + [} u(x) (B2) dx.
By using the differential notation and the fundamental theorem of calculus, we have
[u(x)v(x)] Z = f: v(o)u'(x) dx + f: u(x) v'(x)dx.
The standard form of this integration by parts formula is written as:
(i) f: u(X)v'(x) dx = [u(x)v(x)] Z - ff v(x)u'(x)dx and
(i) Judv=w-—[vdu

du(x) dv (x)

v(x) +ulx)—=—

Example: Evaluate the following integrals:

(i) [xsinxdx (i) [ x%e*dx (iii) f;%xcosxdx (iv) [xe ™ dx (v) [(Inx)dx
Solution: (ii) and (v) left as exercise.

50



www.crescent-university.edu.ng

(i) We set u = x and dv = sinxdx. Then du = dx and v(x) = [sinxdx = —cosx
(we drop constant C since we are yet to finish the required integral). Then, by
the integration by parts, we have

[xsinxdx = [udv
=uv— [vdu
= x(—cosx) — [(—cosx) dx

= —xcosx +sinx+C.

4

T
(iii) JExcosxdx = [xsinx]z — [Zsinxdx

[}

0
= E e 0(0)] — [~ cos x]%
==—1,

(iv)  [xe™Xdx=x(e™)— [(—e™™)dx

=—xe *—e*+C.

4.2.10 Volume, Arc length and Surface Area

Let f be a function that is continuous on [a, b]. Let R denote the region bounded by
the curves x =a, x =b, y =0 and y = f(x). Then, the volume V obtained by rotating R

about the x — axis is given by

V= f:n (f(x))?*dx or f:nyzdx
If we rotate the plane region described by f(x) <y < g(x) and a < x < b around

the y-axis, the volume of the resulting solid is
b
V= [, 2mx(g() ~ f())dx,

orusing V = f:n x?dy when both the lower and upper limit along y-axis are known.

Example
1. Find the volume of a sphere of radius r.

Solution: We recall that the equation of a circle about origin is x + y? = r2, therefore

we have V= m@?—x*)dx

4 . .
= gnrz cubic units.

2. A solid is formed by the rotation about OY of the part of the curve y = x3 between y = 1
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and y = 8. Show that the volume is 2Z cubic units.
y 5

Proof: V= flgﬂxzdy
- 7Tf18( %)2 dy
=5

5 5
= gn(S)a — gnu)s - 93?” cubic units.

3. Consider the region R bounded by y = sinx, y = 0,x = 0 and x = «. Find the volume
generated when R rotated about (a) x-axis (b) y-axis (c) x = m.
Solution:
(i) V= f:nsinzxdx
= 1[2-sinxcosx)]| §

2

==
. T B
(i) V=, 2mxsinxdx
= 2m[—x cosx +sinx] | (using integration by part)
= 271 (m)

= 2m? .

(i) v =[ 2n(r—x)sinxdx
= 2m[—mcosx + x cos x — sinx] 5
= 2m[2m — 7]

=212 .

The arc length, L is calculated using the formula:
L= [ 1+ ()2dx

Example
1. Let C = {(x,coshx):0 < x < 2}. Then the arc length L of C is given by
L= f02V1 + sinh? x dx
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= foz cosh x dx
= [sinh x] g

= sinh 2.

2. Let € = {(x, 2x3/2):0 < x < 4}. Then the arc length L of the curve C is given by

4 2
L=, \/1+(§-§x1/2) dx
= f:(l + x)V2dx
_ 4
= [2a+n22]

—2[5v5 - 1]

3. Prove that the circumference of a circle of radius r is 2nr.
Proof: The equation of the circle at the origin is x? + y? = r2. Differentiating with

respect to x, we have

2x +2y 2 =0 :%:5.

So,
T x 2
L=f7 J1+(2) dx
2 2
= for al ;zy dx

= forgdx

r

7252

= [r sin™?! f]

dx

_ T
—Jo

r
0

=rsin 11

T
=7r:-=
2

Hence, the circumference of the circle is 4 - % =2nr .

The surface area S, generated by rotating C about the x-axis is given by
Se = [} 2m |fF OWT+ (F (0)2dx
While the surface area S, generated by rotating C about the y-axis is given by

Sy = f: 2m x| /1 + (f'(x))%dx .
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Example: Let C = {(x, coshx):0 < x < 4}.

1. The surface area S, generated by rotating C around the x-axis is given by
Sy = f: 2m cosh x V1 + sinh? h dx
=21 f: cosh? x dx
= Zn[é(x + sinh x cosh x)] g’

= 1[4 + sinh 4 cosh 4].

2. The surface area S, generated by rotating the curve C about the y-axis is given by
Sy = f: 2mx V1 + sinh? h dx
=2m f: x cosh? x dx
= 2m[x sinh x — cosh x] g

= 2m[4 sinh4 — cosh 4 + 1]
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§ 5.0 MULTIPLE INTEGRAL

5.1.1 Volume and Double Integrals
Let f be a function of two variables defined over a rectangle R = [a, b] X [c,d]. We
would like to define the double integral of f over R as the (algebraic) volume of the solid

under the graph of z = f(x,y) over R.
z z=f(xy)

A

b R =[a,b] X [c,d]

a ={(x,y) ER*la<x<bh,c<y<bh}
X

To do so,, we first subdivide R into mn small rectangles R;; each having area AA,
where i = 1,2,3,...,m and j = 1,2,3,...,n. For each pair (i,j), we pick an arbitrary point

(x*ij’y*ij) inside R;;. We then use the value f(x*ij,y*ij) as the height of a rectangular

solid erected over R;;. Thus its volume is (x*ij,y*l.].) AA . the sum of the volume of all
these small rectangular solids approximates the volume of the solid under the graph of
z = f(x,y) over R. This sum Zﬁlz’}:lf(x*ij,y*ij) AA is called a Riemann sum of f. We

define the double integral of f over R as the limit of the Riemann sum as m and n tend

to infinity. In other words,
[Jp fCoy)dA = lim ¥, ?=1f(x*if'y*ij) A4
if this limit exists.

Theorem 5.1.2: If f(x,y) is continuous on R, then [[. f(x,y) dA always exists.

If f(x,y) =0, then the volume V of the solid lies above the rectangle R and below

the surface z = f(x,y) is

V=]l fy)dA.
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5.2 lterated Inteqgrals

Let f(x,y) be a function defined on R = [a,b] X [c,d]. We write fcdf(x,y) dy to
mean that x is regarded as a constant and f(x,y) is integrated with respect to y from
y =c to y =d. Therefore, fcdf(x,y) dy is a function of x and we can integrate it with
respect to x from x =a to x = b. The resulting integral f: fcdf(x,y) dy dx is called an
iterated integral. Similarly, one can define the iterated fcd f:f(x, y)dxdy.

Consider a positive function f(x,y) defined on a rectangle R = [a, b] X [c,d]. Let V

be the volume of the solid under the graph of f over R. We may compute V by means of

either one of the iterated integrals: ff fcdf(x, y)dydx or fcd fff(x, y)dx dy.

Example Evaluate the iterated integrals (a) f: ff x’ydydx (b) ff f03 x%ydxdy.

Solution:
(a) f, J, x*y dy dx = [[22°] 7= dx
= f:%dx
— [ﬁ x=3
21 x=0

_ 27
==

(b) f12 f03x2y dxdy = flz[szy] izg dy

= [Foydy
= [2£]¥=2
2 ly=1
_
==

Theorem 5.2.1 (Fubini’'s Theorem) If f(x,y) is continuous on R = [a, b] X [c, d], then

LS ey dyde = [£f) F(x,y) dx dy

5.2.2 Examples

1. Giventhat R = [O,g] X [0,%], evaluate ffR sin x cos y dA.
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Solution:  ff, sinxcosydA = [? [Zsinxcosydy dx

= [2sinx dx [2cosydy
0 0

=]

= [~ cos x] % [siny]
= [0+ 1][1 — 0]
=1.
Remark: In general, if f(x,y) = g(x)h(y), then
[y 9@ h()da = (J; gCo) dx) (J h)dy) where R = [a,b] X [c,d]

2. Evaluate the double integral [f, (x* + y?) dxdy where R is the region in xy plane
bounded by y = x2,x =2 and y = 1.
Solution: [ [ (x? + y?) dydx = [[x?y + 2|7 d
olution: [ J= (x*+y*)dydx = | [x°y + 3|77 dx

= [{(x* + 5 -x2-1) dx

5 7 3 _
— |x x/ _x° _ x| x=2
_[?+H 3 3l x=1
1006
© 105

3. Evaluate (a) [™ ["(sinx + cos y) dxdy (b) [* [ dxdy
’ T J0 1)y .
Solution:
(@) f;" Jy (sinx + cos y) dxdy = [*"[(~cosx) + x cos y] 15 dy
° ° T x=0
= ["[mcosy + 1]dy
= [msiny + y] 2:

=2n—m—T

=0.

(b)) J7 [ dxdy = [’[x])%2) dy
= [f0? -y dy

= [ - ]2
3 211
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5.2.3 Double Integral over General Region

Let f(x,y) be a continuous function defined on a closed and bounded region D in

R?. The double integral [f, f(x,y)dA can be defined similarly as the limit of a Riemann
sum and iterated integral can also be adopted. In particular, if D is one of the following two
types of region in R?, then we may set up the corresponding iterated integral:
(i) If D is the region bounded by two curves y = g;(x) and y = g,(x) from
x =ato x =b, where g,(x) = g.(x) V x € [a,b] , we called it a type 1 region
and can be computed using iterated integral.
(ii) If D is the region bounded by two curves x = h;(y) and x = h,(y) from
y=cto y=d, where h,(y) > h,(y)V y €[c,d] , we called it a type 2 region

and iterated integral can be computed as well.

Example

1. Evaluate [[, (x +2y)dA, where D is the region bounded by the parabolas y = 2x* and
y =1+ x2.
Solution: The region D is a type 1. Equating the two parabolas to obtain limits for x, we

have x = +1. So

1 p1+4x?
Il Ge+2y)dA = [7 [, (x + 2y) dydx
— 21 y=1+x?
= [y +y*1 % dx

= f_ll(—3x4‘ —x3+2x%*+x+1)dx

32
15

2. Evaluate the iterated ff, xy dA, where D is the region bounded by the line y = x — 1

and the parabola y? = 2x + 6.
Solution; Left as exercise.

3. Find the volume of the solid S that is bounded by the curve x? + 2y? + z = 16, the
planes x = 2,y = 2, and the three coordinate planes.

Solution: V= [f, (16 —x* +2y*)dA
= foz f02(16 —x% + 2y?) dxdy

= 48.
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4. Find the volume of the solid above the xy-plane and is bounded by the cylinder
x?+y?=1andtheplanez=0andz=y
Solution: Since the plane z = y is the top face of the solid, we may use the function
defining this as the height function of this solid. The function whose graph is the plane
z =y is simply f(x,y) = y. Therefore, the volume of the solid can be computed by
integrating this f over the bottom face of the solid which is the semi-circular disk
D={(xy)|x*+y*<1,y =0}

Volume (V) = [f, f(x,y)dA

= f f Jl—yzydxdy
= [, 291 - y2dy

3

Properties of Double Integrals

1. J, oy +gCey)dAd=[f, flx,y)dA+ [[, g(x,y)dA.

2. [[, cd(x,y)dA =c[[, f(x,y)dA, where cis a constant.

3. Iff(x,y) 2g(x,y)V (x,y) €D, then [ f(x,y)dA = [f, g(x,y)dA.
4. [, f(x,y)dA = ffle(x,y) dA + fszf(x,y) dA, where D =D, UD,and D, ND, =@
except at their boundary.

5. [[, dA = A(D), the area of D.

6. fm<f(x,y) <MYV (x,y) €D,thenmA(D) < [f, f(x,y)dA < MA(D).

Theorem 5.2.4 (Fubini’s Theorem for triple integrals) If f(x,y,z) is continuous on

= [a,b] x [c,d] x [r,s], then [[[, feuy,2)aV = [*[] [ f(x,y,2) dydxdz

Example
1. Evaluate [ff, xyz®dV, where B = [0,1] x [-1,2] x [0,3].

Solution:  fff, xyz*dV = f3 fz flxyz2 dxdydz

= [/ 22 2l dydz
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ff”zddz

= f;%dz

27

2. Evaluate [ff, xyzdV where B ={(x,y,2) ER’|0<x<1,0<y<1 0<z<1}

1
Ans.= -.
8

Exercise 4

1. Evaluate the following: (a) J; [ Wy dxdy (b) f;f J, VT =17 cosZ0r drdd.
2. Find the volume of the solid that lies under the curve z = x? + y?, above the xy-
plane, and inside the cylinder x? + y? = 2x.
3. Evaluate [f, (3x +4y?) dA, where R is the region in the upper half plane bounded by
the circles x? + y? = 1 and x? + y? = 4.
4. Evaluate the following triple integrals:
a) ff f_32 fol(x2 + yx + z3) dydxdz

b) [ff, e*¥%cosxyzdV where B = [0,2] x [-1,2] x [0,3].
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§ 6.0 LINE INTEGRALS

Consider a plane curve C:x = x(t), y = y(t), z=z(t) or r(t) = x(t)i + y(t)j. We
assume C is a smooth curve, meaning that r'(t) # 0, and r’'(t) is continuous for all t. Let
f(x,y) be a continuous function defined in a domain containing C.

To define the line integral of f along C, we subdivided arc from r(a) to r(b) into n
small arcs of length As;, i = 1,2, ...,n. Pick an arbitrary point (x*i,y*j) inside the ith small
arc and form the Riemann sum Z?zlf(x*i,y*j) As;. The line integral of f along C is the
limit of this Riemann sum.

Definition 6.1.1 The integral of f along C is define to be
Jo Feoyyds = lim B, f (x5 y"; ) Asi.

We can pull back the integral to an integral in terms of t using the parameterization r.

Recall that the arc length differential is given by ds = |r'(t)||dt|, thus

[ fOeyyds = [7 F) I ©)lde = [ Fee(®), y(®) (&) + (@) de.

We note that since a <t < b, then we have |dt| = dt.

Definition 6.1.2 Given a smooth curve C:r(t) = x(t)i + y(t)j, a <t <b.

[, fy)dx =[] f(x(®),y®)x'®)dt, [, flxy)dy = [} f(x®),y(®)y (D)dt

are called the line integrals of f along C with respect to x and y.

Sometimes, we refer to the original line integral of f along C, namely

. feyyds = 7 G, y0) (&) + @) dt,

as the line integral of f along C with respect to arc length.

Definition 6.1.3 Let F be a continuous vector field defined on a domain containing a

smooth curve C given by a vector function r(t),t € [a, b]. The line integral of F along the

curve Cis [, F-dr= [ F(r(t) r'(t)dt.
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Remark:
(1) The line integral along C, denoted by

[, [PG,y)dx +QGx,y)dyl or [32) [Pdx + Qdy]
(this could be evaluate by the definite integral f;lz [PCx, f(x)dx + Q(x, f(x))f'(x)dx] )
(2) We make the following abbreviation:

| Py dx+ @iy = [ Peyyax+ [ @ dy
C

Cc C

Examples
1. Evaluate fC (2 + x2y) ds, where C is the upper half of the unit circle traversed in the

counter clockwise sense.

Solution: We may parameterize C by x = cost, y =sint, t € [0,7]. Thus

Jo @+x*y)ds = f:(Z + cos? tsint) Vsin? t + cos? t dt
= fOn(Z + cos?tsint)dt

= [Zt — Zcos® t]’g

=27T+E.
3

2. Evaluate | (%1'12))

(a) straight line from (0,1) to (1,2)
(b) straight line from (0,1) to (1,1) and then from (1,1) to (1,2).

Solution:

[(x% — y)dx + (y? + x)dy] along

(a) The equation of the straight line given, (0,1) to (1,2) in xy-planeis y =x + 1,
dy = dx. So we have

JSDNG = y)dx + (v + D)y = [ = G+ Ddx + [(x + 1D + x]dx

= [, (2% + 2x)dx

(b) Along the straight line (0,1) to (1,1), we have y =1, dy = 0.
fol[x2 —1]dx + [1 + x](0) = fol(x2 —1dx = _g_

Along the straight line from (1,1) to (1,2),x =1,dx =0
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10

[ =10 + [y? + 1Jdy = [ + Ddy = 3.

Then the required value = —g + 13—0 = g

3. Evaluate [, y*dx + xdy, where
(@) C = C, is the line segment from (=5, —3) to (0,2),
(b) C = C, is the arc of the parabola x = 4 — y?2 from (=5, —3) to (0,2).
Solution:
(@) Ci:x=5t—-5 y=5t—-3, 0<t<1.Using
[, feuy.2)dz = [, f(x(t),y(t), 2(t)) z'(t)dt, and remark number 2, we have

J,, y?dx + xdy = [} (5t —3)?5dt + [, (5t — 5) 5dt = —2-

(b) Cr:x =4 —t2, y=t,—-3<t<2. Thus

[, yidx +xdy = [° t?(=20)? dt + [ (4 — t?) 5dt = ==

4. Evaluate fc F-dr, where F(x,y,z) ={(xy,yz,zx), and C is the curve r(t) =
(t,t%,t3), t € [0,1].
Solution: First r'(t) = (1,2¢,3t?). Thus
F(r(®) -r'(e) =(t-t2,¢% - ¢3,¢% - t) - (1,2¢,3t%) = 3 + 5¢°.
Therefore,

[, F-dr= [ F@r®) - r'(®)dt = [ (t*+5t5)dt = =,

Theorem 6.2 (Fundamental Theorem for Line Integrals)

Let C be a smooth curve given by r(t),t € [a, b]. Let f be a function of two or three

variables whose gradient Vf is continuous. Then [, F-dr = f(r(b)) — f(r(a)).

Proof

Jo Frdr=[. Vf@r(®) r'(t)dt

(L ey o)
_fa (6xdt+6ydt+6zdt dt

= (L rr(t))dt by Chain rule

a dt

= f(r(0)) — f(r(a)) by fundamental Theorem of Calculus. m
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mMG

Example Consider the gravitational (force) field F(r) = = where r = (x,y, z). Recall that
mMG . . . . .
F =Vf, where f(x,y,z) = T Find the work done by the gravitational field in

moving a particle of mass m from the point (3,4,12) to the point (1,0,0) along a piecewise

smooth curve C.

Solution: Work done (W) = fc F-dr = fc Vf-dr = £(1,0,0) — £(3,4,12) = 12mMG

13

Definition 6.3.1 A simple curve is a curve which does not intersect itself.

Definition 6.3.2 A subset D in R" is said to be connected if any two points in D can be

joined by a path that lies in D.

Theorem 6.3.3 (Green’s Theorem)

Let C be a positively oriented, piecewise-smooth, simple closed curve in the plane
and let D be the region bounded by C. If P(x,y) and Q(x,y) have continuous partial

derivatives on an open simply connected region that contains D, then

opP

fc de+Qdy=ffD (Z_z_E)dA'

The line integral [. Pdx + Qdy has other notations as ¢. Pdx + Qdy, or §, P dx + Qdy.

They all indicated the line integral is calculated using the positive orientation of C.

Examples
1. Evaluate fc x* dx + xydy where C is the triangular curve consisting of the
line segment from (0,0) to (1,0), from (1,0) to (0,1).
Solution: The function P(x,y) = x* and Q(x,y) = xy have continuous partial

derivatives on the whole of R?, xvhich is open and simply connected.
y'

0,1

y=1-—x

4

(0,0) (1,0) o X
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By Green’s Theorem,

Jo x*dx +xydy = [ (a(xy) as;j))dA

= [, ydydx

1 ,~1-
= [, J, " ydydx

2. Evaluate §, (3y —e""*) dx + (7x +/y* + 1)dy, where C is the circle x* + y* =9,
oriented in the counter clockwise sense.
Solution: € bounds the circular disk D = {(x,y)|x* +y? <9} and is given the

positive orientation. By Green’s Theorem,
a7 «/ “+1)  9(3y—esin¥
gﬁ (3y — Sln")dx+(7x+\W)dy ff [ s Py (ya; )]dA

= ffD 4 dA
= 4(m3?%)
= 36rm.

[Green’s theorem to find Area: Area of D = [ 1dA = ¢, Pdx + Qdy]

3. Find the area of the elllpse — + —=1.

Solution: Let the parametric equation for the ellipse be x = acost, y = bsint for

t € [0,27]. Then
1
Area (A) = Egﬁan dy — ydx
1 f2m . .
=3 fo (acost)(bcost) — (bsint)(—asint)dt

1 p2m
= EfO ab dt

= mwab.

4. Let F(x,y) = [+ 2+ >j. Show that [. F-dr =2m for every simple closed

2+y

curve that encloses the origin.
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Solution: We note that the vector field F is defined on R?\{0,0}. Let C be any closed
curve that enclose the origin. Choose a circle C! centred at the origin with a small
radius a such that C? lies insideC. We can parameterize C', x = acost, y = asint,
t € [0,2m]. Let D be the region bound between € and C!. We give both € and C? the
counter clockwise orientation. Thus, dD = C — C! is given the positive orientation

with respect to the region D. By Green’s Theorem, we have

foo Frdr = ff, 3= (5=) — 3 () a4

=1, i S . Sy )

(x2+y2)2 (x2+y2)2

Thus,
Jop Frdr= [ F-dr
21 '

= [, F@®)-r'(tadt
_ 21I(—asint)(—asint)+(acost)(acost)dt
—Jo (a? cos? t+a?sin?t)
= 2m. [ ]

Exercise 5

1. Evaluate . 2xds, where C consists of the arc C; of parabola y = x* from (0,0) to

(1,1) followed by the vertical line segment C, from (1,1) to (1,2). Ans.:(5V5 + 11)
2. Evaluate by Green’s Theorem, gﬁc e *sinydx +e*cosydy, where C is the

rectangle with vertices (0,0), (, 0), (n,g),(o,g), oriented in the counter clockwise

sense. Ans.:2(e™™ —1)
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