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§ 1.0      REAL VALUED FUNCTIONS OF A REAL VARIABLE 

INTRODUCTION 

The collection of all real numbers is denoted by   . Thus,   includes the 

integers              , the rational numbers, 
  , where p and q are integers      , and the irrational numbers, like   ,  ,  , etc. Members of   may be 

visualized as points on the real number line as shown in the figure below: 

 

  

     

 We write     to mean   is a member of the set  . In other words,   is a real 

number. Given two real numbers   and   with    , the closed interval       consists of 

all   such that       and the open interval       consists of all   such that      . 

Similarly, we may form the half open or clopen intervals        and       . 
 The absolute value of a number      is written as     and is defined as 

                                                                 
For example,      ,               Some properties of     are summarized as 

follows: 

1.                  

2.                   

3. For a fixed             if and only if (iff)           
4.              

5. (Triangle inequality)            +               

 

Theorem 1.0.1: If    , then       iff         
Proof: There are two statements to prove: first, that the inequality       implies the 

inequalities        and conversely, that        implies       . 

Suppose      . Then we also have        . But either       or        and 

hence                . This proves the first statement. 

Conversely, assume       . Then if      we have        , whereas if    , we have         . In either case, we have      , and this complete the proof. 

 

4       -3 -    -2 -1 0    
1    2 
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Theorem 1.0.2: (Triangle inequality)  For any arbitrary real number   and  , we have 

               . 
Proof: Adding the inequalities            and            we obtain 

                                                  , 
and hence, by Theorem 1.0.1, we conclude that  

                                             .           

 If we take       and      , then         and the triangle inequality 

becomes                   . This form of the triangle inequality is often used in 

practice. 

 

1.1 FUNCTIONS 

A function       is a rule that assigns to each   A one specific member      of 

B. The fact that the function   sends   to      is denoted symbolically by       . For 

example,              assigns the number 
        to each     in  . We can specify a 

function   by giving the rule for     . The set   is called the domain  of   and   is the 

codomain of  . The range of   is the subset of   consisting of all the values of  . That is, 

the range of               . 
Given      . It means that   assigns a value      in   to each    . Such a 

function is called a real-valued function. For a real-valued function       defined on a 

subset   of  , the graph of   consists of all the points          in the    plane. 

 

 

 

 

 

 

 

 

 

Let   be a function whose domain    and range    are sets of real numbers. Then   is said to be even if                 .  And   is said to odd if  
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                   .  (Check whether                         are even or 

odd.)  Also,   is said to be one-to-one if                              . 

A function   of the independent variables            with dependent variable   is 

of the form                . The function   is called function of several variables. If    , we frequently write         , and if    , we write           . In this case, the 

domain D of a function is the set of allowable input variables                , while the 

range is the set that contains all positive values for the output variable  . This means   is 

in the range of   if there exists     a                so that                . 
 

Remark: Some examples of real functions 

1. Constant function. A function whose range consists of a single number is called a 

constant function. E.g.       . 

2. Linear functions. A function   defined for all real   by a formula of the form           is called a linear function because its graph is a straight line. 

3. The Power function. For a fixed positive integer  , let   be defined by the equation           real  . When    , this is the identity function. When    , the graph 

is parabola. For    , the graph is a cubic curve. 

4. Polynomial function. A polynomial function   is one defined for all real   by an 

equation of the form                                    The number            are called the coefficients of the polynomial and the nonnegative integer   is called its degree          . 
5. Unit step function,     , is defined as follow:                                                        
6. Signum function, sign    , is defined as   sign                                                            

 

1.2 LIMIT OF FUNCTIONS 

 We begin with a review of the concept of limits for real-valued functions of one 

variable. Recall that the definition of the limit of such functions is as follows. 

 

Definition 1.2.1: Let         and let    . Then              means that for 

each     there exist some     such that that             , whenever 

          . (or        ) 

 The two fundamental specific limits results which follow easily from the definitions 

are: 



 

6 

 

www.crescent-university.edu.ng 

1. If    , then           and 

2.           for any    . 

 

The basic facts used to compute limits are contained in the following theorem. 

 

Theorem 1.2.2: Suppose that for some real numbers   and  ,              and             . Then 

(i)          , where   is constant 

(ii)                                         
(iii)                                         
(iv)                                           
(v)                                        if             . 

 

Proof: 

(i) Let              and     be given. Then                                  

 For (ii) – (iii), let     be given and let              and             . By 

definition          and      such that 

                         whenever                     (1) 

                         whenever                    (2) 

 

(ii) Let              . Then           implies that 

                                          (by (1))      (3) 

                                          (by (2))     (4) 

Hence, if          , then 

                                         
                                                                 (Triangle inequality) 

                                                       (by (3) & (4)) 

                                                                       

 

(iii) Let   be defined as in part (ii). Then           implies that                                         
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(iv) Let     be given. Let                       
Then      and, by definition, there exists           such that              whenever                   (5)              whenever                  (6) 

Let              . Then           implies that            and              (by (5))     (7)            and              (by (6))    (8) 

Also,                                         
                                                                   
                                                                     
                                            
                                           
                                          
                              .   

 

(v) Suppose that     and             . Then we show that               . Since     ,   some      such that              whenever           ,                whenever            ,               whenever           ,            whenever           . 
Let     be given. Let         . Then      and there exists some     such that      and             whenever             ,                          
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                      whenever          .  

This complete the proof of the statement                whenever    . 

 

(iv) to prove (v) as follows:                                   
                                        
                      . This complete the proof of the Theorem. 

 

Now we take up the subjects of limits for real-valued functions of several variables. 

 

Definition 1.2.3: Let         , let       and let    . Then                  

means that the distance, for each     there exists     such that if     and if           , then           . 
 Note that the first use vertical lines denotes absolute value while the second 

denotes distance between two points in   . To begin computing limits we first need some 

specific results similar to those for functions of one variable. The basic principle is that if a 

function of more than one variable is considered as a function of more than one variable, 

then the limit of the function is computed by taking the limit of the function with respect to 

its only variable. One specific case of this principle is stated below. 

 

Theorem1.2.4: Let         and set            . Suppose             . Then                        for any    . 

For example,                              and                              
Essentially all examples of functions of several variables we will encounter are constructed 

from functions of one variable by addition, multiplication, division and composition. So the 

following Basic Limit Theorem will permit us to compute limits. 

 

Theorem 1.2.5: Let           . Suppose                  and                  . 

Then 

1.                         
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2.                       and 

3.                       provided      
 

Moreover, if                                 and if                , then                 .  

                  (The Sandwich Theorem for functions of several variables.) 

 

1.2.6 Examples 

(1) Suppose that                for all   in an open interval containing   and 

                              . Then show that             . 

Proof: Let     be given. Then there exist          , and              such that 

                             whenever            
                             whenever           . 
If          , then           ,            and, hence, 

                             whenever          , and             . 

 

(2) Evaluate each of the following limits. 

      (a)                    (b)                   (c)                   (d)                . 
Solution 

(a)                                              

                                                   

                                         

(b)                                            
                                               
                                          
                                  
                               
(c)                                             
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(d)                                     
                                       
                                                   

                            

Remark: There are some examples of limits which we can use L’Hospital rule and Taylor 

series to solve and we shall discuss these later. 

 

1.3 CONTINUITY OF FUNCTIONS 

Definition 1.3.1: (Continuity at a point) The function   is said to be continuous at   from 

the right if      is defined or exist, and                 . 
 

Definition 1.3.2: The function   is said to be continuous at   from the left if      is 

defined and                 . 
 

Definition 1.3.3: The function   is said to be (two sided) continuous at   if      is 

defined, and                . 
 

Remark:  

(1) The continuity definition requires that the following conditions be met if   is to be 

continuous at   (a point): (a)      is defined as a finite real number, (b)             
exists and equals     , (c)                              . When a function   is 

not continuous at  , one or more, of these conditions are not met. 

(2) All polynomials,                                 are continuous for all real 

values of  . All logarithmic functions,               are continuous for all     . Each rational function,          , is continuous where       . 

(3) Alternative definition: Let         and let    . Then   is continuous at   

means                   . For function of several variables: Let          

and let     . Then   is continuous at    means                     . 
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(4) Epsilon definition: We can define    as continuous at      if for any     we 

can find     such that                whenever          . 

(5) Continuity in an interval: A function   is said to be continuous in an interval if it is 

continuous at ll points of the interval. In particular, if   is defined in the close interval      , then   is continuous in the interval if and only if                   for                          and                 . 
 

1.3.4 Continuity Examples 

(1) Verify the continuity of the following functions: 

 (a)                   at       

 (b)          at    . 

 

Solution: 

(a)                         

                                    
                                                     
                                            
                            
                           

                     . 

Hence,      is continuous at    . 

 

(b) 

 

 

 

 

 

 We have              

                   

                          is continuous at     since                  . 

y=    
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[Alternatively, Let     be given. Let    . Then              . Hence, 

            .] 

 

(2) Show that the constant function        is continuous at every real number  . Show 

that for every constant          is continuous at every real number  . 
 

Solution: 

First of all, if       , then       . We need to show that          . 

      For each    , let    . Then                       for all   such that        . Secondly, for each    , let    . Then                       for all    such that               

 

(3) Show that           is continuous at    . 

 

Solution: Let     be given. Then 

                            
                                   
                                   
                              whenever          . 
We define     . Then it follows that                 and, hence   is continuous at 

    . 

 

(4) Show that         is continuous at    . 

Solution:  

Since       , we need to prove that              . Let     be given. Let us 

concentrate our attention on the open interval       that contains     at its mid – point. 

Then  
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           provided          . 
Since we are concentrating on the interval       for which        , we need to define   

to be the minimum of 1 and 
    . Thus, if we define              , then               

whenever        . By definition,      is continuous at    . 

 

(5) Show that         is continuous at every real number    . 

Solution: Let     be given. Let us concentrate on the interval          ; that is 
         . Clearly     in this interval. Then  

                                  
                                             
                                                   
                                                 
                                              
                                        whenever            . 

We define               . Then for all   such that        ,          . Hence,              and the function         is continuous at each    . 

 

Exercise 1 

1. Evaluate each of the following limits. 

    (a)                      (b)                 (c)                 (d)                  
    (e)              (f)              (g)                (h)                     (i)               

    (j)                         
2. Suppose that a function   is defined and continuous on some open interval       and  

         . Prove that 

    (i) If       , then there exists some     such that        whenever 

                 . 

    (ii) If       , then there exists some     such that        whenever 

                 . 
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Theorem 1.3.5 (Intermediate Value Theorem): Let           be continuous. 

Suppose that          . Then for any   with             there exists         such 

that       . 

 

Example: Let           be given by             ,        . Can we solve       ? 

Solution: The answer is yes. Since               and        , there is a number         such that        by the Intermediate Value Theorem. 
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§ 2.0     DIFFERENTIATION 

  We begin this section by reviewing the concept of differentiation for functions of one 

variable. 

 

Definition 2.1.1: Let         and let    be an interior point of  . (A point      is 

an interior point of   means there is an     such that              .) Then   is 

differentiable at    means there is a number, denoted by        such that 

                                            
or equivalently,                          
exists. The number        is called the derivative of   at   . 

Geometrically, the derivative of a function at    is interpreted as the slope of the line 

tangent to the graph of   at the point           . Not every function is differentiable at 

every number in its domain even if that function is continuous and this is stated in the 

following theorem. 

 

Theorem 2.1.2: If   is differentiable at  , then   is continuous at  . The converse is false. 

Proof: Suppose that   is differentiable at  . Then  

                                              
and       is a real number. So, 

                                                                 
                                                                             
                                                      
                                             . 
Therefore, if   is differentiable at  , then   is continuous at  . 
   To prove that the converse is false, we consider the function         . This 

function is continuous at    . But 
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Thus,     is continuous at   but not differentiable at           

 

Theorem 2.1.3: Suppose that functions   and   are defined on some open interval       
and       and       exist at each point        . Then  

(i)                              (The Sum Rule) 

(ii)                              (The Difference Rule) 

(iii)                , for each constant  .   (The Multiple Rule) 

(iv)                                  (The Product Rule) 

(v)                                      , if            (The Quotient Rule) 

Proof:  

(i)                                              

                                                          

                                  
 

(ii)                                              

                                                          

                                  
 

(iii)                               

                                    

                         
 

(iv)                                        
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(v)                                          
                                                         
                                                                    
                                            
                                        , if            

 

Remark 

          To emphasis the fact that the derivatives are taken with respect to the 

independent variable  , we use the following notation, as is customary:                . 
 Based on Theorem 2.1.3 and definition of the derivative, we get the following 

theorem. 

 

Theorem 2.1.4: 

(i) 
        , where   is a real constant 

(ii) 
             , for each real number   and natural number  . 

(iii) 
               for all real numbers (radian measure)  . 

(iv) 
                   real numbers (radian measure)  . 

(v) 
                   real numbers                . 

(vi) 
                   real numbers          . 

(vii) 
                      real numbers                . 

(viii) 
                       real numbers          . 

Proof: 

(i) 
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(ii) For each    , we get                          

                                                           (Binomial exp.) 

                                                 
                      
 

(iii) By definition, we get                                

                                               

                                                 
                               

                      

               since                                 . 

 

(iv) 
                               

                                                 
                                                  
                               

                      . 

 

(v) 
                        
                                                

                                  

                        
                      ,               . 

 

(vi) Using the quotient rule and part (iii) and (iv), we get 
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                                 . 

 

(vii) 
                     
                                          

                               
                                        . 

 

(viii) 
                     
                                        

                                

                                                   

 

2.1.5 Examples 

1. (a) Show that         is differentiable everywhere. 

     Solution:                                    . Hence        exists and equals     . 

     (b) Show that          ,         is differentiable at     . 

      Solution:                                         
                                                                    

                                                              
                                                       
         In the last step, we use the fact that 

   is continuous at       
       (c) The function          is not differentiable at    . 

        Solution:                                             , 
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                                                                     . 

          Hence,                      does not exist and   is not differentiable at 0. 

 

2. Compute the following derivatives: 

    (i) 
                      (ii)                   (iii)                   

    (iv) 
              

    Solution: 

(i) 
                                               

                                                    
 

(ii) 
                                       
                                                
                                             . 

 

(iii) Using the sum and product rules, we get                                          
                                                                                      
                                                                 
                                                        . 

 

(iv) 
                                                     

                                                             

                                                       . 

 

Exercise 2 

1. From the definition, (a) prove that 
         

                                (b) prove that 
            

      2.  Compute the derivative 
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2.2 The Chain Rule 

          Suppose we have two functions,   and  , related by the equations:        and       . Then                   . The chain rule deals with the derivative of the 

composition and may be stated as the following theorem. 

 

Theorem 2.2.1(The Chain Rule): Suppose that   is defined in an open interval   
containing  , and   is defined in an open interval   containing     , such that      is in   
for all    . If   is differentiable at  , and   is differentiable at     , then the composition       is differentiable at   and                         . In general, if        and       , then 

               . 

Proof: Let   be defined on   such that 

                                                                               
since   is differentiable at      
                                                          

                                                 
                                                
Therefore,   is continuous at     . By the definition of  ,                          
for all    . For each    , we let        on  . Then  

                                                         

                                                                                    

                                                                       

                                                     
It follows that     is differentiable at  . The general result follows by replacing   by the 

independent variable  . This completes the proof. 

 

2.2.2 Examples 

1. Let        and       . Then 
        and 

         . Therefore,  

              
                               . 

     Using the composition notation, we get 
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      and 
                       . 

      Using                         , we see that                    and 

                               
                                       
                                  . 
 

2. Suppose that            . 
     We let       , and        . then  

                
               

                                
                                     . 
 

PP: Evaluate 
     if               . 

 

2.3 Differentiation of Inverse Functions 

          One of the applications of chain rule is to compute the derivatives of inverse 

functions. 

Theorem 2.3.1: Suppose that a function   has an inverse,    , on an open interval  . If          then  

(i) 
                 

(ii)                              
Proof: By comparison,              . Hence, by the chain rule 

                                                       
and                       . In the          notation, we have 

             . 
 

2.3.2 Examples 

(1) Let          ,        and         . Then        and by the chain rule, we  

      get                                 
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     Therefore,   
                               

                                                         

                                                              

      Thus, 
                           . We note that      are excluded. 

 

(2) Let                           and                . Then,        

                                                        

                                           
                                   
                                             . 
       Thus, 

                                       . 
 

Theorem 2.3.3 (The Inverse Trigonometric function): The following differentiation 

formulae are valid for the inverse trigonometric functions: 

(i) 
                            

(ii) 
                             

(iii) 
                           

(iv) 
                            

(v) 
                                         

(vi) 
                                         . 

 

Theorem 2.3.4 (Logarithmic and Exponential functions) 

(i) 
            for all                      [Note:            

(ii) 
           for all real   

(iii) 
                 for all             

(iv) 
                for all real               



 

24 

 

www.crescent-university.edu.ng 

(v) 
                                                     . 

Proof: (i) and (ii) left as exercise. 

(iii) By definition, for all                                . Then 

               
                            

                                           
                                       . 
 

(iv) By definition, for real                         . Therefore, 

                
                   

                                                 (by applying the chain rule) 

                                   . 

 

(v)      
                                 

                                                                           
                                                                        . 
 

Example 

1. Let              . Then  

          
                                   

                                                        

                                                       
 

2. Let        . Then, by the chain rule, we get 

              
              

                           . 
 

3. Let              . By definition and the chain rule, we get 

              
                               . 
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Theorem 2.3.5 (Differentiation of Hyperbolic functions) 

(i) 
                 

(ii) 
                 

(iii) 
                  

(iv) 
                   

(v) 
                       

(vi) 
                       . 

 

Proof: 

(i) 
                           
                                 
                             
                        . 

 

(ii) 
                           
                                  
                              
                         . 

 

(iii) 
                             
                                                              

                              
                              
                          . 

 

(iv) 
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                              . 

 

(v) 
                        
                                                

                                        
                              . 

 

(vi) 
                        
                                                         

                                                

                                        . 

 

Theorem 2.3.6 (Inverse Hyperbolic Functions) 

(i) 
                    

(ii) 
                             

(iii) 
                             

 

Proof: Exercise. 

 

2.4 Implicit Differentiation 

       In an application, two variables can be related by an equation such as (i)           

(ii)            (iii)                 . In such cases, it is not always practical or 

desirable to solve for one variable explicitly in terms of the other to compute derivative. 

Instead, we may implicitly assume that   is some function of   and differentiable each term 

of the equation with respect to  . Then we solve for    noting any conditions under which 

the derivative may or may not exist. 
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Examples 

(1) Find 
     if          . 

      Solution: Assume that   is to be considered as a function of  , we differentiate each  

      term of the equation with respect to  . 

                
                        

                              

                                    . 

 

(2) Compute 
     for the equation                  . 

      Solution: 
                                 

                                                                              
                                                       

                                                   

                                                  whenever                       . 

 

          Using the definition: Let         and let   be an interior point of  , then   is 

differentiable at   means there is a number,      , such that 

                                                          , 

 

We now give the definition of differentiability for functions of several variables as 

follows: 

 

Definition 2.5.1: Let          and let    be an interior point of  . (A point      is 

an interior point of   mean there is an     such that                      Then   

is differentiable at    means there is a vector, denoted by        for now, such that 

                                                                            . 

          For functions of two variables, the definition becomes the following. 

 



 

28 

 

www.crescent-university.edu.ng 

Definition 2.5.2: Let          and let         be an interior point of  . Then   is 

differentiable at         means there are two numbers           and           such that 

                                                                                                               . 

Here, we are dealing with partial derivatives and we used to denote partial derivatives as 

                                                 . 
For example: Let                         . Then 

                                    and                       . 

 

Implicit function 

          For a given function        with     and 
       at the point        , there 

corresponds a unique function      in the neighbourhood of        . 
          Let us consider the equation 

                                                                                        (1) 

                                                                                        (2) 

Under certain circumstances, we can unravel equations (1) and (2), either algebraically or 

numerically, to form                     . The conditions for the existence of such a 

functional dependency can be bound by differentiation of the original equations; for 

example, differentiating equation (1) gives 

                                                                        (3) 

Holding   constant and dividing by   , we get 

                            
                                                                (4) 

Operating on equation (2) in the same manner, we get 

                            
                                                                (5) 

Similarly, holding   constant and dividing by   , we get 

                            
                                                                (6) 

                            
                                                                (7)           

Equations (4) and (5) can be solved for 
     and 

     , and equations (6) and (7) can be solved 

for 
     and 

     by using the well known Crammer’s rule. To solve for      and 
     , we first write 

equation (4) and (5) in matrix form: 
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                                                     (8) 

Thus, from Cramer’s rule, we have 

             
                                           

                           ;                                                    
                           .         (9) 

In a similar fashion, we can form expressions for 
     and 

     : 

             
                                           

                           ;                                                    
                           .         (10) 

Here we take the Jacobian matrix   of the transformation to be defined as 

                                  .                                                                     (11) 

This is distinguished from the Jacobian determinant    , defined as 

                 det                                  .                                              (12) 

If      , the derivatives exist, and we indeed can form        and       . This is the 

condition for existence of implicit function conversion. 

 

2.5.4 Example 

 If                   ................(i) 

                       ...........................(ii)       evaluate 
     . 

Solution: Here we have four unknowns in two equations. In principle, we could solve for        and        and then determine all partial derivatives, such as the one desire. In 

practice, this is not always possible; for example, there is no general solution to sixth order 

polynomial equation as in the case of quadratic equation. So we need to use the method 

discussed above to be able to provide the desire solution. 

 Equations (i) and (ii) are rewritten as 

                                         ...................(iii) 
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                                                ....................(iv) 

Using the formula from equation (9) to solve for the desired derivative, we get 

                           
                                           

            ......................(v) 

Substituting, we get 

                            
                                                            ...............(vi). 

Note: When           , that is, when the relevant Jacobian determinant is zero; at 

such points, we can neither determine 
     nor 

    . Thus, for such points we can not form       . 
 

2.5.5 Functional dependence 

          Let          and         . If we can write        or       , then   and   

are said to be functionally dependent, otherwise, functionally independent. If 

functionally dependence between   and   exists, then we can consider         . So,  

                            
                                                     (13) 

                            
                                                     (14) 

In matrix form, this is 

                                               
               

Since the right hand side is zero, and we desire a non-trivial solution, the determinant of 

the coefficient matrix must be zero for functional dependency i.e. 

                                                   . 

Note, since            , that this is equivalent to  

                                                                  

That is, Jacobian determinant must be zero for functional dependence and       for 

functional independence. 
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Examples 

(1) Determine if                                (i) 

                                                  (ii) 
                                             (iii) 
    are functionally dependent or functionally independent. 

 Solution: The determinant of the resulting coefficient matrix by extension to 3 

functions of three variables is 

                      
                   

                                     
    

                                    
                       (iv) 

                                                                                          (v) 

                                                                        (vi) 

                                                                                    (vii) 

                                                                                                     (viii) 

So,       are functionally dependent. 

In fact,        . 
 

(2) Given that         ,             . Determine whether   and   are 

functionally dependent or not. 

Solution: Exercise 

 

2.5.6 Maxima and minima 

          Consider the real valued function     , where        . Extrema are at     , 

where         , if         . It is a local minimum, a local maximum, or an inflection 

point according to whether         positive, negative is or zero, respectively. 

          Now consider a function of two variables       , with                . A 

necessary condition for an extremum is  

                       
                                             (17) 

where         ,         . Next we find the Hessian matrix: 

                                                                                          (18) 
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We use   and its element to determine the character of the local extremum: 

(i)   is a maximum if 
                  , and 

                          
(ii)   is a minimum if 

                  , and 
                          

(iii)   is a saddle otherwise, as long as       , and 

(iv) If       , higher order terms need to be considered. 

 

Examples 

(1) Consider extrema of        . 
Solution: Equating partial derivatives with respect to   and   to zero, we get 

                
                   (i) 

                
                 (ii) 

   This gives    ,    . For these values we find that 

 

                                                      .      (iii) 
             Since          , and 

       and 
       have different signs, the equilibrium is a  

             saddle point. 

 

(2) Find the local maximum, local minimum and saddle points (if any) of 

                      
Solution: First           and          . Now we proceed to solve 

          and          for the critical points. The two equations are 

equivalent to      and     . Substituting one into the other, we obtain 

       . That is                          . Thus the real solutions are          . Therefore, the critical points are                and      . To apply the 

second derivative test, we compute the second order partial derivatives. 

         , .       . Thus                              . 

At                      . Hence,   has a saddle point at      . At        ,                and                . Hence,   has a local minimum at        . At                        and              . Hence,   has a local 

minimum at                 
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2.5.7 Lagrange’s Multiplier 

   Lagrange multipliers- Simplest case 

          Consider a function   of just two variables   and  . Say we want to find a stationary 

of the form        subject to a single constraint of the form         . 

(i) Introduce a single new variable  - we call   a Lagrange multiplier. 

(ii) Find all sets of values of         such that        and          where                i.e. 
           and  

            and          . 

(iii) Evaluate        at each of these points. We can often identify the 

largest/smallest value as the maximum/minimum of        subject to the 

constraint, taking account of whether   is bounded or unbounded above/below. 

 

Example 

1. Maximize           subject to       i.e. subject to             . 

Solution: Since we have one constraint and so we introduce one Lagrange 

multiplier  . Compute 
                            and solve the (two + one) 

equations 

                     
                   i.e.                       (i) 

                     
                   i.e.                       (ii) 

                                  i.e.                   (iii) 

Substituting (i) and (ii) in (iii) gives      i.e.     , so from (i) and (ii) the function 

has a stationary point subject to the constraint (here a maximum), at          . 
 

2. Find the extreme value of               on the circle        . 

Solution:        is subject to          where               . So we 

introduce one Lagrange multiplier  . Compute 
                                

and solve the (two + one) equations 

                     
                   i.e.                          (i) 

                     
                   i.e.                          (ii) 

                                  i.e.                        (iii) 
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Equation (i)       or      (ii)   either     or    . So possible solutions are              and              where           (max), while           (min). 

 

Lagrange multipliers- General number of variables and constraints 

          The method easily generalises to finding the stationary points of a function   with   

variables subject to   independent constraints. E.g. consider a function          of three 

variables       subject to two constraints            and           , then: 

(i) at a stationary point    is the plane determined by    and    

(ii) introduce two Lagrange multipliers, say          

(iii) find all sets of values           satisfying the five (i.e. 3+2) equations            and            and           . 

          Again consider the general case of finding a stationary point of a function           , subject to   constraints                                     .  

(i) Introduce   Lagrange multipliers         

(ii) Define the Lagrangian   by 

                      
               

                                                                     . 
(iii) The stationary points of   subject to the constraints             are 

precisely the set of values of                   at which 

            
                                     . 

 

Example Find the maximum value of                  on the curve of intersection 

of the plane         and the cylinder        . 

Solution: We wish to maximize                  subject to the constraints                  and                 . First we have           ,             . Thus we need to solve the system of equations (3+2): 

                                                       . That is 

                                                                          (i) 

                                                                        (ii) 

                                                                            (iii) 

                                                                    (iv) 



 

35 

 

www.crescent-university.edu.ng 

                                                                        (v) 

From (iii),    . Substituting this into (i) and (ii), we get       and      . Note that     by (ii) and (iii). From (iv), we have 

                                                 .  (vi) 

Using (v), we have                . From this, we can solve for  , giving        . 

Thus,           or         . The corresponding values of   are 
              . Using (vi), the 

corresponding values of   are                  . Therefore, the two possible extreme 

values are at points                              and                             . As             and            , the maximum value is       and the minimum 

value is      . 

 

         We shall now examine more facts about functions of one variable. 

 

2.6 Mathematical Applications 

Definition 2.6.1 A function   with domain   is said to have an absolute maximum at   if                    . The number      is called the absolute maximum of   on  . The 

function   is said have a local maximum (or relative maximum) at   if there is some open 

interval       containing   and       is the absolute maximum of   on      . 
 

Definition 2.6.2 A function   with domain   is said to have an absolute minimum at   if                    . The number      is called the absolute minimum of   on  . The 

number   is called a local minimum (or relative minimum) of   if there is some open 

interval       containing   and       is the absolute minimum of   on      . 
 

Definition 2.6.3 An absolute maximum or absolute minimum of   is called an absolute 

extremum of  . A local maximum or minimum of   is called a local extremum of  . 

 

Theorem 2.6.4 (Extreme Value Theorem) If a function   is continuous on a closed and 

bounded interval      , then there exist two points,    and   , in       such that       is the 

absolute minimum of   on       and       is the absolute maximum of   on      . 
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Definition 2.6.5 A function   is said to be increasing on an open interval       if                               such that      . The function   is said to be decreasing 

on       if                              such that      . The function   is said to be 

non – decreasing on       if                              such that      . The 

function   is said to be non – increasing on        if                              such 

that      . 

 

Theorem 2.6.6 Suppose that a function   is defined on some open interval       containing 

a number   such that       exists and        . Then      is not a local extremum of  . 

 

Proof: Suppose that        . Let            . Then    . Since     and 

                                                          

there exists some     such that if          , then 

                                                                
                                                                         
                                                                              . 
The following three numbers have the same sign, namely,                         and                . Since         or        , we conclude that 

                                                   or  
                          such that          .  

Thus, if                , then either                   or 

                 . It follows that      is not a local extremum.   

 

Theorem 2.6.7 If   is defined on an open interval       containing   ,      is a local 

extremum of   and       exists, then        . 

 

Theorem 2.6.8 (Rolle’s Theorem) Suppose that a function   is continuous on a closed 

and bounded interval      , differentiable on the open interval       and          . Then 

there exists some   such that       and        . 
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Proof: Since   is continuous on      , there exist two numbers    and    on       such 

that                                . (Extreme Value Theorem) If            , then 

the function   has a constant value on       and         for          . If 
            , then either            or           . But          and         . It 

follows that          or          and either    or    is between   and          

 

Theorem 2.6.9 (The Mean Value Theorem) Suppose that a function    is continuous 

on a closed and bounded interval       and   is differentiable on the open interval      . 
Then there exists some number   such that       and  

                                   
                  . 

 

Proof: We define a function      that is obtained by subtracting the line joining          
and          from the function  : 

                                                                  . 
The   is continuous on       and differentiable on      . Furthermore,            . By 

Rolle’s Theorem, there exists some number   such that       and 

                                         
                                                        . 

Hence, 
                   as required .   

 

Theorem 2.6.10 (Cauchy – Mean Value Theorem) Suppose that two functions   and   are continuous on a closed and bounded interval      , differentiable on the open 

interval       and         for all        . Then there exists some number   in       
such that  

                                  
                              . 

 

Proof: We define a new function   on       as follows: 

                                                                   . 
Then   is continuous on       and differentiable on      . Furthermore,        and       . By Rolle’s Theorem, there exists some   in       such that        . Then  
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and, hence, 
                              as required.   

 

Theorem 2.6.11 (L’Hospital Rule, 
   Form) Suppose   and   are differentiable and         on an open interval       containing   (except possibly at  ). Suppose that             ,              and                   , where   is a real number,   or   . 

Then        

                                                                         . 

 

Proof: We define        and       . Let        . Then   and   are continuous on      , differentiable on       and         on      . By the Cauchy Mean Value Theorem, 

there exists some         such that 

                   
                                       . 

Then  

                                                       . 

Similarly, we can prove that 

                                        . 

Therefore,  

                                                           . 

 

Note: Theorem 2.6.11 is also valid for the case when                   and                  . 

 

Example: Find each of the following limits using L’Hospital rule: 

(i)                         (ii)                   (iii)                   (iv)              (v)              (vi)               

(vii)            

 

Solution: 

(i)                                                               

(ii)                                        
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(iii)                                        
(iv)                            

(v)                           

(vi)                             

(vii)                                                        

 

 

Theorem 2.6.13 Suppose that two functions   and   are continuous on a closed and 

bounded interval       and are differentiable on the open interval      . Then the following 

statements are true: 

(i) If         for each        , then   is increasing on      . 
(ii) If         for each        , then   is decreasing on      . 
(iii) If          for each        , then   is non – decreasing on      . 
(iv) If          for each        , then   is non – increasing on      . 
(v) If         for each        , then   is constant on      . 
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§ 3.0   TAYLOR SERIES 

          The Taylor series of        about the point      is define as 

                                                                                    

(3.0.1) 

We note that Maclaurin’s expansion is a special form of Taylor series about     . 

 

Theorem 3.1 (Taylor’s Theorem) Let           be   times differentiable on       
with     and its  th derivative      is also continuous on        and differentiable on      . Let         . Then, for each         with      there exists   between   and    
such that 

                                                                             . 
The second term on right hand side is called Taylor series and the last term is called 

Lagrange remainder. 

 

3.2 Examples 

(1) Using Taylor series, expand the function                    around the point  

          . 

      Solution: Recall that                                                                                  

      So,                                            . 
 

(2) Find a Taylor series of      about     if             . 
      Solution: Direct substitution reveals that the answer is 

                                                                  . 

          

           It is possible to use Taylor series to find the sums of many different infinite series. 

The following examples illustrate this idea. 

 

(3) Find the sum of the following series:  

                                            

      Solution: Recall the Taylor series for   : 
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       The sum of the given series can be obtained by substituting in    : 

                                          . 
 

(4) Find the sums of the following series: 

       (a)                     (b)                 

     Solution: 

(a) Recall that                        . Substituting in     yields 

                                            . 
(b) Recall that                         . Substituting in     yields 

                                             . 

             This is known as the Gregory – Leibniz formula for    . 

 

 

Limit Using Power series 

          When taking a limit as    , you can often simplify things by substitution in a power 

series that you know. The following examples illustrate the idea. 

 

(5) Evaluate               . 

      Solution: We simply plug in the Taylor series for     . 

                                                                       

                                                                  

                                                                
                                          
                                                

 

(6) Evaluate                  
     Solution: We simply plug in the Taylor series for    and     : 
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(7) Evaluate                  . 

      Solution: Using the Taylor series formula, the first few terms of the Taylor series for  

               are: 

                                                     

       Therefore,    

                                                                      

                                                                      
                                                               

         Limit as     can be obtained using a Taylor series centred at    . 

 

(8) Evaluate              
      Solution: Recall that                               

       Plugging this gives 

                                                                         

                                                                   
                                                        

 

 

3.3. Taylor Polynomials 

          A partial sum of a Taylor series is called a Taylor polynomial. For illustration, the 

Taylor polynomials for    are : 
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You can approximate any function      by its Taylor polynomial:           . If you use 

the Taylor polynomial centred at    . 

 

Definition 3.3.1: (Taylor Polynomial) Let      be a function. The Taylor polynomials for      centred at     are:  

                                              
                                                         
                                                                        
                                      
Note: The 1st – degree Taylor polynomial is just the tangent line to      at    :      . 
This is often called the linear approximation to      near    . 2nd – degree = quadratic 

approximation. 

 

Example 9: 

(a) Find the 5th – degree Taylor polynomial for     . 

(b) Use the answer in (a) to approximate          . 
Solution: 

(a) This is just to find all terms of the Taylor series up to   : 

                                                   
                                                

 

(b)                  
                                           
                        

 

Exercise 3 

1. Evaluate the following limits: 

(i)                  (ii)               (iii)               (iv)                   (v)               
      2.  Find the sum of  the given series. 
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3.  (a) Find the 3rd – degree Taylor polynomial for the function          centred at  

               

     (b) Use your answer from part (a) to approximate          . 
4.  (a) Find the quadratic approximation for the function           centred at     . 

      (b) Use your answer from part (a) to approximate         . 

5.  Find the 4th – degree Taylor polynomial for    . 
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§ 4.0   INTEGRATION   (ANTIDIFFERENTIATION)  

          The process of finding a function      such that          , for a given     , is 

called antidifferentiation.  

 

Definition 4.1.1: Let   and   be two continuous functions defined on an open interval      . If            for each        , then   is called an antiderivative (integral) of   on      . 
 

Theorem 4.1.2: If       and       are any two antiderivatives of      on      , then 

there exists some constant   such that 

                                                 .                         

 

Proof: If                  , then 

                                    
                                        
                                                
By Theorem 2.6.13, part (iv), there exists some constant   such that for all   in      , 
                                   

                               . 

 

Definition 4.1.3: If      is an antiderivative of   on      , then the set 

                          is called a one – parameter family of antiderivatives of  . We 

called this one – parameter family of antiderivatives the indefinite integral of      on       
and write                     .                                                          

 

Note that :  
                       . 

 

4.1.4 Example: The following statements are true: 

1.                       

2.              

3.             

4.                 
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5.                         

6.                

7.                        

8.            

9.                

10.                    

11.                         

12.                          

13.                         

 

4.2 The Definite Integral 

Definition 4.2.1: If   is continuous on       and        , then we say that: 

(i)   is Integrable on      ; 
(ii) the definite integral of      form     to     is  ; 
(iii)   is expressed in symbol, by the equation            ; 

(iv) If        for each        , then the area,  , bounded by the curves       ,                , is defined to be the definite integral of      from     to    . That is,            . 

(v) For convenience, we define            ,                       . 

 

Theorem 4.2.2: (Linearity)  Suppose that   and   are continuous on       and    ,    
constants. Then 

(i)                                      

(ii)                                      

(iii)                        ,                          and                                               

 

Theorem 4.2.3: (Additive) If   is continuous on       and      , then 

                                                                      . 
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Theorem 4.2.4: (Order Property) If   and   are continuous on       and           for 

all        , then 

                                                               . 

 

Proof: Suppose that   and   are continuous on       and                      . For 

each   there exist numbers                    such that 

                            absolute minimum of   on          , 
                            absolute maximum of   on          , 
                            absolute minimum of   on          , 
                            absolute maximum of   on          . 
By the assumption that           on      , we get 

                                 and              
Hence,  

                           and      . 

It follows that 

                                                          

 

Theorem 4.2.5 (Mean Value Theorem for Integrals) If   is a continuous on      , then 

there exists some point   in       such that 

                                         . 
 

Proof: Suppose that   is continuous on      , and    . Let    absolute minimum of   

on      , and    absolute maximum of   on      . Then by Theorem 4.2.4, 

                                                             
And                                  . 

By the Intermediate value theorem for continuous functions, there exists some   such that                    and                    . For                     

 

Theorem 4.2.6 (Fundamental Theorem of Calculus, 1st Form) Suppose that   is 

continuous on some closed and bounded interval       and                for each        . Then      is continuous on      , differentiable on       and for all        ,           . That is,      
                   . 
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Theorem 4.2.7 (Fundamental Theorem of Calculus, 2nd Form) If   and   are 

continuous on a closed and bounded interval       and            on      , then 

                                                 . 
We use the notation:                   . 
 

4.2.8 Examples 

Compute each of the following definition integrals 

1. (i)          (ii)            (iii)               (iv)           (v)            (vi)             

    (vii)                 (viii)               (ix)             (x)            (xi)          

Solution: 

(i)                                   

(ii)                              

(iii)                                     

(iv)                          

(v)                                          

(vi)                                         
(vii)                                                         
(viii)                                                         
(ix)                                

(x)                            

(xi)                            
 

2. Verify each of the following:  (i)                         

                                                  (ii)                 

     Solution: 

(i)                     
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                                                  . 

Therefore, 

                                                     . 

 

(ii)                           

    
                         

Therefore,  

                                             . We observe that               . 
 

4.2.8 Integration by Substitution 

          Many functions are formed by using compositions. In dealing with a composite 

function, it is useful to change variables of integration. It is convenient to use the following 

differential notation: If       , then           . 

 

Example:  

(1) Evaluate the following integrals: (i)          (ii)               (iii)                

 (2) Determine the area, A, bounded by the curves       ,                    . 

Solution: 

1. (i) Let     . Then 
                  . So, we have 

                                  
                                     

                                    

                                    . 

(ii) Set     . At                        . Then 
                . So, we  

     have                                   
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(iii)                              

                                            
                                       , 

      where             . 

 

2. We note that                     and                    . Therefore, the area 

is given by 

                                      

                                                           

                                                      
                                               
                           square units. 

 

4.2.9 Integration by Parts 

          The product rule of differentiation yields an integration technique known as 

integration by parts. Let us begin with the product rule: 

                           
                                      . 

On integrating each term with respect to   from     to    , we get 

                                                                                  . 

By using the differential notation and the fundamental theorem of calculus, we have 

                                                         . 

The standard form of this integration by parts formula is written as: 

(i)                                               and 

(ii)              

 

Example: Evaluate the following integrals: 

(i)           (ii)          (iii)              (iv)          (v)          

Solution: (ii) and (v) left as exercise. 
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(i) We set     and          . Then       and                    

(we drop constant   since we are yet to finish the required integral). Then, by 

the integration by parts, we have 

                           

                                        

                                                    

                                             . 

 

(iii)                                            

                                             
                          . 

 

       (iv)                                 

                                              . 

 

4.2.10 Volume, Arc length and Surface Area 

          Let   be a function that is continuous on      . Let   denote the region bounded by 

the curves    ,    ,     and       . Then, the volume V obtained by rotating   

about the   – axis  is given by 

                                                              or         . 

            If we rotate the plane region described by             and       around 

the  -axis, the volume of the resulting solid is 

                                                                   , 

or using            when both the lower and upper limit along y-axis are known. 

 

Example 

1. Find the volume of a sphere of radius  . 

     Solution: We recall that the equation of a circle about origin is         , therefore  

                     we have                              

                                                          cubic units. 

 

2. A solid is formed by the rotation about    of the part of the curve      between      
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    and    . Show that the volume is 
     cubic units. 

   

    Proof:                   

                                       

                                     
                                                 cubic units. 

 

3.  Consider the region   bounded by       ,         and    . Find the volume  

     generated when   rotated about (a)  -axis  (b)  -axis  (c)    . 

     Solution: 

(i)               

                        
        . 

 

(ii)                

                               (using integration by part) 

          
        . 

 

(iii)                    

                             
              
         . 

 

 

   The arc length, L is calculated using the formula: 

                                                    

 

Example 

1. Let                    . Then the arc length   of   is given by 
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                               . 

 

2. Let                     . Then the arc length   of the curve   is given by 

                                            

                                       

                                        
                                   
 

3. Prove that the circumference of a circle of radius   is    . 

Proof: The equation of the circle at the origin is         . Differentiating with 

respect to  , we have 

                                             . 

So, 

                                  

                                    

                              

                                   

                                              
                                         

                                      

               Hence, the circumference of the circle is                  

 

   

The surface area    generated by rotating   about the x-axis is given by 

                                           . 

While  the surface area    generated by rotating   about the y-axis is given by 

                                        . 
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Example: Let                    . 
1. The surface area    generated by rotating   around the  -axis is given by 

                                             

                             

                                      
                              . 
 

2. The surface area    generated by rotating the curve   about the  -axis is given by 
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§ 5.0   MULTIPLE INTEGRAL 

5.1.1 Volume and Double Integrals 

          Let   be a function of two variables defined over a rectangle              . We 

would like to define the double integral of   over   as the (algebraic) volume of the solid 

under the graph of          over  . 

                                                                                     
 

 

 

 

 

 

 

                                                                                                  
                                                                                                               
                                                                                   

          To do so,, we first subdivide   into    small rectangles     each having area   , 

where             and            . For each pair      , we pick an arbitrary point             inside    . We then use the value                as the height of a rectangular 

solid erected over    . Thus its volume is               . the sum of the volume of all 

these small rectangular solids approximates the volume of the solid under the graph of          over  . This sum                           is called a Riemann sum of  . We 

define the double integral of   over   as the limit of the Riemann sum as   and   tend 

to infinity. In other words, 

                                                                                            

if this limit exists. 

Theorem 5.1.2: If        is continuous on  , then             always exists. 

          If         , then the volume   of the solid lies above the rectangle   and below 

the surface          is 

                                          . 
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5.2 Iterated Integrals 

          Let        be a function defined on              . We write             to 

mean that   is regarded as a constant and        is integrated with respect to   from     to    . Therefore,             is a function of   and we can integrate it with 

respect to   from     to    . The resulting integral                  is called an 

iterated integral. Similarly, one can define the iterated                  . 

          Consider a positive function        defined on a rectangle              . Let   

be the volume of the solid under the graph of   over  . We may compute   by means of 

either one of the iterated integrals:                     or                    . 

 

Example Evaluate the iterated integrals  (a)                 (b)               . 

Solution: 

(a)                                     

                                       

                                                 
                                        . 

 

(b)                                    

                                     

                                                  
                                        . 

 

 

Theorem 5.2.1 (Fubini’s Theorem) If        is continuous on              , then 

                                                                        . 

 

 

5.2.2 Examples 

1. Given that                , evaluate             . 



 

57 

 

www.crescent-university.edu.ng 

    Solution:                                       

                                                                         

                                                                                 
                                                               
                                                     . 

   Remark: In general, if                , then 

                                                                   where               
 

2. Evaluate the double integral               where   is the region in    plane  

     bounded by          and    . 

    Solution:                                            

                                                                             

                                                                                
                                                                . 

 

3. Evaluate (a)                         (b)              . 

    Solution: 

(a)                                                      

                                                                    

                                                                 

                                                           

                                                      . 

 

(b) )                              

                                   

                                   
                         . 
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5.2.3 Double Integral over General Region 

          Let        be a continuous function defined on a closed and bounded region   in   . The double integral            can be defined similarly as the limit of a Riemann 

sum and iterated integral can also be adopted. In particular, if   is one of the following two 

types of region in   , then we may set up the corresponding iterated integral: 

(i) If   is the region bounded by two curves         and         from             , where                        , we called it a type 1 region 

and can be computed using iterated integral.  

(ii) If   is the region bounded by two curves         and         from 

            , where                        , we called it a type 2 region 

and iterated integral can be computed as well.  

 

Example 

1. Evaluate           , where   is the region bounded by the parabolas       and  

          . 
    Solution: The region   is a type 1. Equating the two parabolas to obtain limits for  , we  

                    have     . So 

                                                           

                                                                            

                                                                           

                                                       . 
 

2. Evaluate the iterated       , where   is the region bounded by the line        

    and the parabola        . 

    Solution; Left as exercise. 

 

3. Find the volume of the solid S that is bounded by the curve            , the  

     planes          and the three coordinate planes. 

     Solution:                       

                                                  

                              . 
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4. Find the volume of the solid above the   -plane and is bounded by the cylinder  

            and the plane     and    . 

    Solution:  Since the plane     is the top face of the solid, we may use the function  

    defining this as the height function of this solid. The function whose graph is the plane  

        is simply         . Therefore, the volume of the solid can be computed by      

    integrating this   over the bottom face of the solid which is the semi-circular disk 

                         . 
                                  

                                                     

                                               

                                  . 
 

Properties of Double Integrals 

1.                                          . 

2.                        , where   is a constant. 

3. If                         , then                      . 

4.                                   , where                     

except at their boundary. 

5.          , the area of  . 

6. If                       , then                       . 
 

 

Theorem 5.2.4 (Fubini’s Theorem for triple integrals) If          is continuous on                    , then                                        

 

Example 

1. Evaluate         , where                     . 
Solution:                                 
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                                         . 

 

2. Evaluate         where                                  . 
Ans    . 
 

Exercise 4 

1. Evaluate the following: (a)                        (b)                       . 

2. Find the volume of the solid that lies under the curve        , above the   - 

     plane, and inside the cylinder         . 

3. Evaluate             , where   is the region in the upper half plane bounded by  

    the circles                     . 

4. Evaluate the following triple integrals: 

     (a)                            
     (b)                where                     . 
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§ 6.0   LINE INTEGRALS 

          Consider a plane curve                        or                 . We 

assume   is a smooth curve, meaning that        , and       is continuous for all  . Let        be a continuous function defined in a domain containing  . 

          To define the line integral of   along  , we subdivided arc from      to      into   

small arcs of length    ,          . Pick an arbitrary point           inside the  th small 

arc and form the Riemann sum                   . The line integral of   along   is the 

limit of this Riemann sum. 

 

Definition 6.1.1 The integral of   along   is define to be 

                                                                               . 
We can pull back the integral to an integral in terms of   using the parameterization  . 

Recall that the arc length differential is given by               , thus 

                                                                                                      . 
We note that since      , then we have        . 
 

Definition 6.1.2 Given a smooth curve                             . 

                                                 ,                                   
are called the line integrals of   along   with respect to   and  . 

          Sometimes, we refer to the original line integral of   along  , namely 

                                                            ,  
as the line integral of   along   with respect to arc length. 

 

Definition 6.1.3 Let   be a continuous vector field defined on a domain containing a 

smooth curve   given by a vector function             . The line integral of   along the 

curve   is                          . 
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Remark: 

(1) The line integral along  , denoted by  

                                   or                            

     (this could be evaluate by the definite integral                                      ) 

(2) We make the following abbreviation: 

                                          

 

Examples 

1. Evaluate            , where   is the upper half of the unit circle traversed in the 

counter clockwise sense. 

Solution: We may parameterize   by                         . Thus  

                                                                  
                                                                    
                                                                
                                                       . 
 

2. Evaluate                                 along 

(a) straight line from        to        
(b) straight line from        to        and then from        to       . 
Solution:  

(a) The equation of the straight line given,       to        in    -plane is       ,  

       . So we have 

                                                               

                                                                    

                                                                        . 
 

(b) Along the straight line       to      , we have     ,     . 

                                                                 . 
                Along the straight line from       to      ,    ,      
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                                                                 . 

                Then the required value            . 
 

3. Evaluate           , where 

(a)      is the line segment from         to      , 
(b)      is the arc of the parabola        from         to      . 
Solution: 

(a)                       . Using                                               , and remark number 2, we have 

                                                         . 
 

(b)                     . Thus 

                                                                              . 

 

4. Evaluate       , where                    , and   is the curve               ,        . 
Solution: First                   . Thus 

                                                                     .  

Therefore, 

                                                                  . 
 

Theorem 6.2 (Fundamental Theorem for Line Integrals)  

          Let   be a smooth curve given by             . Let   be a function of two or three 

variables whose gradient    is continuous. Then                       . 
 

Proof  

                                 

                                                         

                                               by Chain rule 

                                           by fundamental Theorem of Calculus.   
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C       

            

      

  

  

Example Consider the gravitational (force) field             , where          . Recall that     , where                      . Find the work done by the gravitational field in 

moving a particle of mass   from the point          to the point         along a piecewise 

smooth curve  . 

Solution:                                                        . 

 

Definition 6.3.1 A simple curve is a curve which does not intersect itself. 

 

Definition 6.3.2 A subset   in    is said to be connected if any two points in   can be 

joined by a path that lies in  . 

 

Theorem 6.3.3 (Green’s Theorem) 

          Let   be a positively oriented, piecewise-smooth, simple closed curve in the plane 

and let   be the region bounded by  . If        and        have continuous partial 

derivatives on an open simply connected region that contains  , then 

                                                            . 

 

The line integral            has other notations as          , or           . 

They all indicated the line integral is calculated using the positive orientation of  . 

 

Examples 

1. Evaluate             where   is the triangular curve consisting of the 

line segment from       to      , from       to      . 
Solution: The function           and           have continuous partial 

derivatives on the whole of   , which is open and simply connected. 
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              By Green’s Theorem, 

                                                         

                                                           

                                                             

                                                 . 
 

2. Evaluate                            , where   is the circle        , 

oriented in the counter clockwise sense. 

Solution:   bounds the circular disk                   and is given the 

positive orientation. By Green’s Theorem, 

                                                                          

                                                                                 

                                                                                  
                                                                              . 

           

              [Green’s theorem to find Area: Area of                   ] 

 

3. Find the area of the ellipse 
           . 

Solution: Let the parametric equation for the ellipse be                 for         . Then 

                                     

                                                                      
                                          
                                  . 

 

4. Let                        . Show that           for every simple closed 

curve that encloses the origin. 
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Solution: We note that the vector field   is defined on         . Let   be any closed 

curve that enclose the origin. Choose a circle    centred at the origin with a small 

radius   such that    lies inside . We can parameterize   ,                ,          . Let   be the region bound between   and   . We give both   and    the 

counter clockwise orientation. Thus,         is given the positive orientation 

with respect to the region  . By Green’s Theorem, we have 

                                                                  

                                                                              . 

            Thus, 

                                              

                                                                  
                                                                                                     

                                                                

 

Exercise 5 

1. Evaluate       , where   consists of the arc    of parabola      from       to       followed by the vertical line segment    from       to      .   Ans.:            
2. Evaluate by Green’s Theorem,                      , where   is the 

rectangle with vertices                          , oriented in the counter clockwise 

sense.                                                                         Ans.:          
 

 

 


