- 1. Which of the following has a positive charge?
 - (a) proton
 - (b) neutron
 - (c) anion
 - (d) electron
 - (e) atom

2.

Rutherford carried out experiments in which a beam of alpha particles was directed at a thin piece of metal foil. From these experiments he concluded that:

- (a) electrons are massive particles.
- (b) the positively charged parts of atoms are moving about with a velocity approaching the speed of light.
- (c) the positively charged parts of atoms are extremely small and extremely heavy particles.
- (d) the diameter of an electron is approximately equal to that of the nucleus.
- (e) electrons travel in circular orbits around the nucleus.

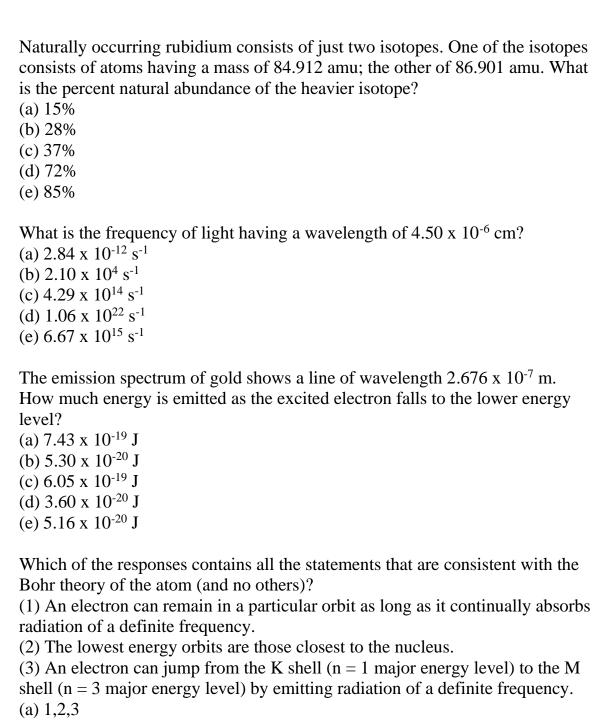
3.

Consider the species ⁷²Zn, ⁷⁵As and ⁷⁴Ge. These species have:

- (a) the same number of electrons.
- (b) the same number of protons.
- (c) the same number of neutrons.
- (d) the same number of protons and neutrons.
- (e) the same mass number.

4.

The neutral atoms of all of the isotopes of the same element have


- (a) different numbers of protons.
- (b) equal numbers of neutrons.
- (c) the same number of electrons.
- (d) the same mass numbers.
- (e) the same masses.

5.

What is the atomic weight of a hypothetical element consisting of two isotopes, one with mass = 64.23 amu (26.0%), and one with mass = 65.32 amu?

- (a) 65.3 amu
- (b) 64.4 amu
- (c) 64.9 amu
- (d) 65.0 amu
- (e) 64.8 amu

6.

(b) 2 only

(c) 3 only

(d) 1,2

(e) 2,3

10.

7.

8.

9.

The Heisenberg Principle states that ______.

(a) no two electrons in the same atom can have the same set of four quantum numbers.

- (b) two atoms of the same element must have the same number of protons.
- (c) it is impossible to determine accurately both the position and momentum of an electron simultaneously.
- (d) electrons of atoms in their ground states enter energetically equivalent sets of orbitals singly before they pair up in any orbital of the set.
- (e) charged atoms (ions) must generate a magnetic field when they are in motion.

11.

Which statement about the four quantum numbers which describe electrons in atoms is **incorrect**?

- (a) n = principal quantum number, n = 1, 2, 3, ...
- (b) l = subsidiary (or azimuthal) quantum number, l = 1, 2, 3, ..., (n+1)
- (c) m_l = magnetic quantum number, m_l = (-l),, 0,, (+l)
- (d) $m_s = \text{spin quantum number}$, $m_s = +1/2 \text{ or } -1/2$.
- (e) The magnetic quantum number is related to the orientation of atomic orbitals in space.

12.

Which atomic orbital is spherical in shape? (Note: you should know and be able to recognize the shapes of the s orbital, p_x , p_y , and p_z orbitals, and d_{xy} , d_{yz} , d_{xz} , $d_{x^2-y^2}$ and d_{z^2} orbitals.)

- (a) 2s
- (b) 3p
- (c) 3d
- (d) 4f
- (e) they are all spherical

13.

The maximum number of electrons that can be accommodated in a sublevel for which l = 3 is:

- (a) 2
- (b) 10
- (c) 6
- (d) 14
- (e) 8

14.

The ground state electron configuration for arsenic is:

- (a) [Ar] $4s^2 4p^{13}$
- (b) [Kr] $4s^2 4p^1$
- (c) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{12} 4s^2 4p^1$
- (d) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^8 4p^5$
- (e) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^3$

15.

	Which of the following electron configurations is correct for nickel?
	(a) [Ar] $4s^1 3d^8$
	(b) [Kr] 4s ¹ 4d ⁸
	(c) [Kr] $4s^1 3d^8$
	(d) [Kr] $4s^2 3d^8$
1.	(e) [Ar] $4s^2 3d^8$
16.	
	The outer electronic configuration ns ² np ⁴ corresponds to which one of the
	following elements in its ground state?
	(a) As
	(b) Ca
	(c) Cr
	(d) Br
17.	(e) S
1/.	In the ground state of a cobalt atom there are unpaired electrons and the
	atom is
	(a) 3, paramagnetic
	(b) 5, paramagnetic
	(c) 2, diamagnetic
	(d) 0, diamagnetic
	(e) 2, paramagnetic
18.	(c) 2, paramagnetic
10.	Which one of the following sets of quantum numbers could be those of the
	distinguishing (last) electron of Mo?
	(a) $n = 4$, $l = 0$, $m_l = 0$, $m_s = +1/2$
	(b) $n = 5$, $l = 1$, $m_l = 9$, $m_s = -1/2$
	(c) $n = 4$, $l = 2$, $m_l = -1$, $m_s = +1/2$
	(d) $n = 5$, $l = 2$, $m_l = +2$, $m_s = -1/2$
	(e) $n = 3$, $l = 2$, $m_l = 0$, $m_s = +1/2$
19.	
	How many p electrons are there in an atom of rubidium?
	(a) 12
	(b) 18
	(c) 24
	(d) 9
	(e) 6
20.	
	A neutral atom of an element has 2 electrons in the first energy level, 8 in the
	second energy level and 8 in the third energy level. This information
	does not necessarily tell us:

- (a) the atomic number of the element.
- (b) anything about the element's chemical properties.
- (c) the total number of electrons in s orbitals.
- (d) the total number of electrons in p orbitals.
- (e) the number of neutrons in the nucleus of an atom of the element.
- 21. The three basic components of an atom are:
 - a. Protons, neutrons, and ions
 - **b.** Protons, neutrons, and electrons
 - **c.** Protons, neutrinos, and ions
 - **d.** Protium, deuterium, and tritium
- 22. An element is determined by the number of
 - a. Atom
 - b. Electron
 - c. Neutrons
 - d. Protons
- 23. The nucleus of an atom consists of:
 - a. Electron
 - b. Neutrons
 - c. Protons and Neutrons
 - d. Protons, neutrons and electrons
 - 24. A single proton has what electrical charge?
 - a. No charge
 - b. Positive charge
 - c. Negative charge
 - d. Either positive or negative
 - 25. Which particles have approximately the same size and mass as each other?
 - a. Neutrons and electrons
 - b. Electrons and protons
 - c. Protons and neutrons
 - d. none