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Vector Spaces
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Vector Spaces Pa

a ——"‘(()’Ul,ﬂﬂg).
Is the set U a vector space?
I

Proposition 1.1.1. Let X be a vector space. For arbitrary vectors X,y € X and number

X € K the following assertions and equalities are valid:

the null vector 0 of the vector space X is unique:
« the inverse vector —X of each X € X is unique;

the uniqueness of the inverse vector allows to define the operation of subfract
. x—y < x+(-y);

X=y & x-y=0;

ex=0 ¥VxcX ;

«AD0=0 VACE K ;

o (—1l)x=-x;

e Mx =0 & (A=0V x=0).

Become convinced of the trueness of these assertions! [J

Example 1.1.2. Let us consider the set of all (7 X n)—matrices with complex elements

The sum of this matrices will be defined by the addition of the corresponding elements of
the matrices. By multiplying the matrix by a complex number A one will multiply by this
number all the elements of the matrix. We leave the check that all condition ‘ K are
satisfied to the reader. This vector space over the complex number field C will bc;n d:-:uzcd
C™*"_1f we confine ourselves to real matrices, then we shall get vector space | R -
over the number field R.. The space C™x1 will be identified with the space C™ and the

space R™*1 with the space R™.

Example 1.1.3. The set F' [ov, 8] of all functions X [0, 3] — Risavector space

(prove!) over the number field R if

o (x+y)(8) & x(t) +y(t) ¥t € mf]

| (x)(d) ¥ dx(t) V€ [
X«
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Thus the set H is a subspace in the matrix vector space R2*2,
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Subspaces of the Vector Space Page 3ot 4 f

Example 1.2.4. Let X =R¥and Z= {[1;1; 0]7, [1;~1; 0]7 }. Then {
apan Zi={ [; ;007 : o, f € R }- Prove! i

Proposition 1.2.4. The set 8pan Z of the set Z C X is the least subspace that contain the
set Z.

Proof. First, let us prove that 8pan Z is a subspace of the space X. It is sufficient, by
proposition 1.2.1, to show that 8pan Z is closed with respect to vector addition and

multiplication of the vcctor by a number:

X,y € span Z «::}x_zmu,. AY = Zﬂ,v,/\m,ﬁ, ceKAwv, €2 =
§=

X+y= me—{—Zﬁ,v, Ao, B E KAw,v; € Z&x+yE€spanZ
=1 i=

14
AeKAx€EspanZ &I €KAX =) mmAw € ZAoy, A€ K=

=1
x )\Zmu,, Z (Ao )u; = Eﬂ,m/\ﬂ, cKAw €Z ©IxcapanZ.
Thus, .«prmZ is a subspacc of the space X. Let us show that 8pan Z is the least subspace

of the space X that contains the set Z. Let Y be some subspace of the space X for which
7 C Y.AsZ C Y and Y is a subspace, the arbitrary linear combination of the elements

os the set Z belongs to the subspace Y. Therefore, span Z as the set of all such lincar

combinations belongs to the space Y.

Corollary 1.2.1. A subset W of the vector space X is a subspace if it coincides with its
span, i.c, W < X < W =spanW.

T
Problem 1.2.2." Does the vectord = [ 8§ 7 4 ] belong to the subspace

span{a, b, c}, when

a={1 ~1 D]T,b=[2 3 l]T,c=[6 9 3}T?

hllp;.f’/www.cs.ut.ce/~toomas__l/linalg/linl/node6.html 9/2/04
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Let us consider the equality

(1 +z) + (2 + ) +y(1 + 22) =0.

It is well-known in algebra that a polynomial is identically null if all its coefficients are
zeros. Thus we get the system

o+ =10

n+3=0 .

g+y=0

This system has only a trivial solution. The set U is linearly independent
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AR Y J e

EXAMPLE 4.4 Consider the vector space | P, (1) consisting of all polynomials of degree <n.

@) Clearly every polynomial in P, (#) can be expressed as a lincar combination of the n + 1 polynomials

1 ¥ f f §
) i\ { i G i

. ) 2 J )
Thus, these powers of 1 (where | ) form a spanning set for P, (1)

(») One can also <how that, for any scalar ¢, the following n | powers of 1~ ¢,

) A3
1. { (& u <), ! [l I X ‘ (! )

) .
(where (1 — ¢ Y 1), also form a spanning set for P (1)

EXAMPLE 4.5 Consider the vector space M = M, , consisting of all 2 = 2 matrices, and consider the following

four matrices i M
N 1 0] N o 1 - 0 o] g 0 0]
oo 2710 o) 27 1 o) 279 1]

‘ } : 2 : P o £ V.
Then clearly any matrix 4 in M can be written as a lhnear combination of the four matrices. For exampie,

It

{= |7 : 5Ey) — 6E\y + TEy + 8Ex

o

This section introduces the important notion of a subspace.
DEFINITION:  Let I be a vector space over a field K and let J1” be a subset of V. Then W is a subspace
of 1 if I is itself a vector space over K with respect to the operations of vector
addition and scalar multiplication on V.
The way in which one shows that any set Ji" is a vector space is to show that I¥ satisfies the eight
axioms of a vector space. However, if 11" is a subset of a vector space V. then some of the axioms
automatically hold in J¥; because they already hold in V- Simple criteria for identifying subspaces follow.

THEOREM 4.2:  Suppose J" is a subset of a vector space V. Then W' isa subspace of Vif the following
two conditions hold:
(a) The zero vector 0 belongs to W.
(b) For every u, v € W,k € K: (i) The sum u + v € W. (i) The multiple ku € W.

Property (i) in (b) states that I} is closed under vector addition, and property (11) in (b) states that /' is
closed under scalar multiplication. Both properties may be combined into the following equivalent single
statement:

(&) For every u. v € IV, a.b € K, the linear combination au + bv € W.

Now let ! be any vector space. Then J automatically contains two subspaces: the set {0} consisting of
the zero vector alone and the whole space V itself. These are sometimes called the #rivial subspaces of V.
Examples of nontrivial subspaces follow.

EXAMPLE 4.6 Consider the vector space V' = R®.
(a) Let U consist of all vectors in R® whose entries are equal: that is,
U= {Ul.b.(') a=b= (.‘}

For example, (1,1, 1), (=3, =3, =3), (7,7,7), (=2, =2, 2) are vectors in U. Geometrically, U is the line
through the onigin O and the point (1,1, 1) as shown in Fig. 4-1(a). Clearly 0 = (0,0, 0) belongs to U, because
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P (1) consisting of 1l puluuwml.lls of degree <n.

EXAMPLE 4.4 Consider the vector space I’

(a) Clearly every polynomial in P, (r) can be expressed as a linear combination of the n + | polynomials

2 3 n

1. . . ¢, ...,

5 . " d (1)
Thus. these powers of 7 (where 1 %) form a spanning set for P, (1)

(b) One can also show that, for any scalar ¢, the following n | powers of t - ¢,

2 3 n
l, t—¢, (t—¢) (=c), ..., U—C)
(where (7 - ¢)® = 1), also form a spanning set for P, (1)

matrices, and consider the following

EXAMPLE 4.5 Consider the vector space M = M, , consisting of all 2
four matrices in Mt

0 ! 0 1 , 0 0 : [0 0]
E = l ] [‘.]1 ” [an = . [.-: 1|

=10 0] S 1000 . 1 0 L0 1]
Then clearly any matrix .4 in M can be written as a linear combination of the four matrices. For ex

ample,

A= {; >§J = 5E) —6E); + TEy + 8Ey

Accordingly, the four matrices Eyy, £}5, £,y, £, span M.

4,5 Subspaces

This section introduces the important notion of a subspace.

DEFINITION:  Let I/ be a vector space over a field K and let JI” be a subset of V. Then I¥ is a subspace
of VV if W is itself a vector space over K with respect to the opcrations of vector

addition and scalar multiplication on V.
The way in which one shows that any set J¥ is a vector space is to show that ¥ satisfies the eight
axioms of a vector space. However, if IV is a subset of a vector space F. then some of the axioms
automatically hold in /¥, because they already hold in V. Simple criteria for identifying subspaces follow.

THEOREM 4.2:  Suppose /¥ is a subset of a vector space V. Then W is a subspace of }'if the following
two conditions hold:
(a) The zero vector 0 belongs to I.
(b) Forevery u,v € W,k € K: (i) The sum u + v € W. (11) The multiple ku € W.

Property (i) in (b) states that IV is closed under vector addition, and property (i) in (b) states that # 1s
closed under scalar multiplication. Both properties may be combined into the following equivalent single
statement:

(0") For every u,ve W.a.b € K, the linear combination au + bv € W.

Now let I” be any vector space. Then V' automatically contains two subspaces: the set {0} consisting of
the zero vector alope‘ and the whole space ¥ itself. These are sometimes called the #ivial subspaces of V.
Examples of nontrivial subspaces follow.

EXAMPLE 4.6 Consider the vector space V = R>.
(a) Let U consist of all vectors in R whose entries are equal; that is,
U={(a.bc):a=b= 2}

For example, (1, 1,1), (=3, - 3 ~3).(7,7,7), (=2, =2, —2) are vectors in U. Geometrically, U is the line
through the origin O and the point (1,1, 1) as shown in Fig. 4-1(a). Clearly 0 = (0,0, 0) belongs to U, because
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all entries in 0 are equal. Further, suppose w and v are arbitrary vectors in U, say, ¥ = (@, @ a) and v = (&, b o
Then, for any scalar k € R, the following are also vectors in {
ut+v=_(a+b a+b, atd) and ku = (ka, ka, ka)
r s “ 3
Thus, U is a subspace of R”.
. . 3 . \ e i H{h R {1 { wie Lodgae
(b) Let B be any plane in R” passing through the ongin, as picture din Fig 4-1(b) Then O 800 ngs to W,
ecause we assumed W passes through, the origin O Further, suppose & and v are vectors in W Thea v and
may be viewed as arrows in the plane /" emanating from the origin O, as in Fig. 4-1(b). The suin u and any

multiple ku of u also lie in the plane W Thus, W is a subspace of R’

Figure 4-1

EXAMPLE 4.7

(a) Let ¥ =M,,, the vector space of n X n matrices. Let ¥, be the subset of all (upper) triangular matnces and let
¥, be the subset of all symmetric matrices. Then W, is a subspace of ¥, because W'y contaius the rero matnx 0
and W, is closed under matrix addition and scalar multiplication; that is, the sum and scalar multiple of such
triangular matrices are also triangular. Similarly, W, is a subspace of V.

(b) Let ¥ = P(¢), the vector space P(f) of polynomials. Then the space P, (1) of polynomials of degree at most n
may be viewed as a subspace of P(1). Let Q(r) be the collection of polynomials with only even powers of ¢. For
example, the following are polynomials in Q(1):

p =3+42 -5 and pz-——-6—7t"+9t6+3t12

(We assume that any constant k = ki® is an even power of ) Then Q(¢) is a subspace of P(r).

(¢) Let ¥ be the vector space of real-valued functions. Then the collection W, of continuous functions and the
collection W, of differentiable functions are subspaces of V.

Intersection of Subspaces

Let U and W be subspaces of a vector space V. We show that the intersection U 0 I is also a subspace of
V. Clearly, 0 € U and 0 € W, because U and W are subspaces; whence 0 € U (1 IF. Now suppose w and o
belong to the intersection U N W. Then u, v € U and u, v € W. Further, because U and I are subspaces
for any scalars a,b € K, ¥

au+ bve U and au+bvew

Thus, au + bv € U N W. Therefore, U N W is a subspace of V.
The above result generalizes as follows.

THEOREM 4.3:  The intersection of any number of subspaces of a vector space V is a subspace of ¥



