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ats ave called vectors, involves an 2zbitrary field X,. ',
will be used (unless otherwise staicd ©of ¢

This chepter intreduces the underlying stivct
_The definition of a.vector space ¥, whoge elem®
whose elements arc celled scalars. The following fotation
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°, v W vectors in ¥/
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CHAPTER 4 Vector Spaces

[A4] (u+v)+w=u+(v+w)
alled the zero vector, such that, for any

[A;] There is a vector in ¥, denoted by 0 and ¢

uev,
U+0=0+u=¥u
oted by —u, and called the negative of u,

[A;] For each u € V, there is a vector in ¥, den

such that
u+(—u) = (—u) +u=0.

B whu= vt

M,] k(u+v)= Ju + kv, for any scalar keKk.
[My] (a+b)u=au + bu, for any scalars 4, beK.
[Ms] (ab)u= a(bu), for any scalars a,b € K.

[My] lu=u, for the unit scalar 1 € K.
s indicated by the labeling of the axioms). The first

d can be summarized by saying Visa

ms naturally split into two sets (a
the additive structure of V an

ion. This means

The above axio
four are concerned only with

mmutativ
(@ Anysumv +v+ - 4 v, of vectors requires no parentheses and does not depend on the order of
the summands.
(b) The zero vector 0 is unique, and the negative —u of a vector u is unique.

v.

, where —uv is the unique negative of v.
d with the “‘action’” of the field K of scalars

(Problem 4.2) the following simple

(c) (Cancellation Law) If u4+w=v+w, thenu =

Also, subtraction in V' is defined by u —v=u+ (—v)
On the other hand, the remaining four axioms are concerné
on the vector space V. Using these additional -axioms, we prove

properties of a vector space.

Let ¥ be a vector space over a field K.

(i) For any scalar ke Kand 0 €V, 0 =4.
(i1) For 0 € K and any vector u € V, Ou =10
(ii1) Ifht=0,wherek€Kandu€V, then k =
For any k € K and any u € vV, (-ku= k(—u) = —ku.

0 or u="0.
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CHAPTER 4 Vector Spaces

Polynomlial Space P(t)

Let P(1) denote the set of all polynomials of the form

T

p(1) =a0+a1t+azt2+---+ast‘“
hen P(#) is a vector space over K using the following operations:

where the coefficients a; belong to a fieldK. T

(i) Vector Addition: Here p(f) +¢(t) in P(1)

(i1) Scalar Multiplication: Here kp(1) in P(t)
polynomial p(f).

The zero polynomial 0 is the zero vecto

is the usual operation of addition of polynomials.
is the usual operation of the product of a scalar k and a

rin P(5).

Polynomial Space P,(t)
Let P, () denote the set of all polynomials p(f) over a field K, whe

equal to n; that is,
p(1) =ao+a,t+a212 + - tagl

re the degree of p(f) is less than or

where s < n. Then P,(f) is a vector space over K with respect to the usual operations of addition of
y a constant (just like the vector space P(t) above).

- polynomials and of multiplication of a polynomial b
We include the zero polynomial 0 as an element of P,(#), even though its degree is undefined.
? ]

Matrix Space M, ,

The notation M,, ,,, or simply M, will :
K. Then M, , is a vector space over K with respect to the usual operations of matrix addition and scalar
multiplication of matrices, as indicated by Theorem 2.1.

Functlon Space F(X) :
¥ be a nonempty set and let K be an arbitrary field. Let F(X) denote the set of all functions of X" into

te that F(X) is nonempty, because X is nonempty.] Then F(X) is a vector space over K with

to the following operations: ; 5

Vector Addition: The sum of two functions f and g in F(X) is the function, £

(e =r0)+e@) Vx € X ; e

 Scalar Mulfiplication: The product of a scalar k € K and a fu

- F(X) defined by i

be used to denote the set ofallm x n mamces with entries in a field

g in F(X) defined by

the function kf in

ero element 0 € K;

by
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Linear Combinations, Spanning Sets

‘Let V be a vector space over a field K. A vector vin V is a linear combination of vectors ty Uy, .. Uy, in

V if there exist scalars a;, @z, . .., @, i K such that
v =ayuy + agty + 0 Ayl
mbination of u,uy, . ..., if there is a solution to the vector equation
E,acl«- " elamenst OF e space X #af A0
resseo ac ‘tﬁf' = "/“QX};

lf m element 5 B
EXAMPLE 4.1 (Lincar Combinations in R") Suppose we want o express o (3 7,~4) h

combination of the vectors e
W= (112,3)) = (2, etk Uy = (3,5,6)
We seek scalars x, y, z such that v = xuy + yuy + zuy; that is,
3 1 2 3 x+2p+32z= 3

7] =ni{a| +p]|8| +w]3] or 43y+5= 7
4 § 4 |6 x4+ 7+ 6z=—4

al wmmm._mmwxm the vectors in R’ as columns, because
ns.) Reducing the system to echelon form yields :

4—2?-&'3:- 3

Alternatively, v is a linear co
v =x Uy + XUy + -+ Xylly

where X, X3, . . - , X, are unknown scalars.
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The system is in triangular form and has a solution. Back-substitution yields the solution x = 3y=12=-2

Thus,

v=3p, +p,— 2P
an identity in the variable £ that is, the equation holds for any value

(2) The equation (*) is actually
of 1. We can obtain three equations in the unknowns x, y, z by setting ¢ equal to any three values.

For example,
Set # = 0 in (1) to obtain: x+ 4+ 6z2=-5
Set t = 1 in (1) to obtain: 4x + 11y +10z =3

Sett = —1in (1) to obtain:  y+ 4z = —17
Reducing this system to echelon form and solving by back-substitution again yields the solution x =3,y = 1,
z = —2. Thus (again), v=3p, + — 2p;. 90 /
g Py + P2 3 af Hoe r4 Z 7¢ Cal

fha sot Bf bl P7Eb Lnanc G 8 Gt Govtams e I Gl

i ﬁt' Spanning Sets ( Soan (
’ e Let Vbcavectorspacc‘o’?l‘e;l?.Vectét%u,,uz,...,u,,, in V are said to span V or to form a spanning set of ~
7 CX V if every v in V is a linear combination of the vectors Uy, Uy, - - - Uy—that is, if there exist scalars
a,,@s,...,4a, in K such that

v=a,u|+agu2+---+a,,,u,"

The following remarks follow directly from the definition.

Refnark 4: Suppose uj,u,. ..Uy, span V. Then, for any vector w,
spans V.

Remark 2: Smposcu,,ug,...,u‘.spani’ands@pwnkisa
other «’s. Then the u’s without u; also span V. ‘

Romark 3:  Suppose i, iy, - -l PN V' and suppose one
u's W dmezmvoctowalsowlﬁ ‘

EXAMPLE 4.3 Consider the vector space ¥ = R’.
(a) We claim that the following vectors form a
. (1,0,6),

v=ae, + be,
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7 ‘MMPLE 4.4 Consider the vector space V' = P, (1) consisting of all polynomials of degree <n.

8 (a) Clearly every polynomial in P, (¢ 1) can be expressed as a linear combination of the n + 1 polynomials

e R o
Thus, these powers of 1 (where 1 = %) form a spanning set for P(1).

(b) One can also show that, for any scalar ¢, the following n + | powers of t = ¢,

T ST (r—-c)z‘ (r-—c)3, M0 e g
(where (¢t — ¢)® = 1), also form a spanning set for P,(1).

EXAMPLE 4.5 Consider the vector space M = M, , consisting of all 2 % 2 matrices, and consider the following

four matrices in M:
el O C 0 0
R O TR L Rt 1

Then clearly any matrix 4 in M can be written as a linear combination of the four matrices. For example,

-6
A= [,57 8:I =5E““‘6El2+7E2|+8E22

Accordingly, the four matrices Eyy, Eyy, £y, Ej; span M.

4.5 Subspaces
This section introduces the important notion of a subspace.

Let ¥ be a vector space over a field K and let ¥ be a subset of V. Then I¥ is a su ;
_ of V if W is itself a vector space over K with respect to the mﬂm’
Mo addition and scalar multlphcanon on V.
" The way in which one shows that any set /¥ is a vector space is to show M w
ms of a vector space. However, if /' is a subset of a vector space V. ther
matically hold mW; because they already hold in V. Simple criteria for

Smaposc W is asubsetofavemtspace V. Then W is a:
two conditions hold:

(a) The zero vector 0 b@laaga o w.

. DEFINITION:
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EXAMPLE 4.4 Consider the vector space V= P, (1) consisting of all polynomials of degree <n.

(t) Clearly every polynomial in P,(¢) can be expressed as a lincar combination of the n 4 | polynomials

e DO SRR o
Thus, these powers of 1 (where | = ) form a spanning set for P,(r).

(b) One can also show that, for any scalar ¢, the following » + 1 powers of 1 = ¢,

R Lt hp, frwal, i o)
(where (7 - )" = 1), also form a spanning set for P, (1)

EXAMPLE 4.5 Consider the vector space M = M, consisting of all 2 % 2 matrices, and consider the following

four matrices in M:

: 9 s U 0 0 0 0
Ellz[o O]' Ell""[o 0]1 E23=[1 0]’ 522”[0 ‘]

Then clearly any matrix 4 in M can be written as a linear combination of the four matrices. For example,

-6
A= [?I 8] =5E“'—6E12+7Eg|+8E22

Accordingly, the four matrices E), E)», £, Ex; span M.

4.5 Subspaces
This section introduces the important notion of a subspace.

fmmmm LetVbeavoctorspaceoveraﬁeldKandl&W%ﬁMﬁf”MWﬁ‘
| onifWasltselfavec&mspwcomeWmM"' :

& addition and scalar multiplication on V. Sty
Xhmymwﬁehméaﬂwsthatmysatwiﬁﬂv&mmhhﬂww hat ¥ sat
wioms of a vector space. However, if J/” is a subset of a vector space V, then som
tically W‘MEWMMQym@WmVWMh
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EXAMPLE 4.4 Consider the vector space V' = P, () consisting of all polynomials of degree <n
(a) Clearly every polynomial in P, () can be expressed as a linear combination of the n + 1 polynomials

2
Thus. these powers of  (where 1 = %) form a spanning set for E.t1)

(b) One can also show that, for any scalar ¢, the following n + I powers of 1 ~ ¢,

1, t—e, (r~—c):‘ (¢ - .. i-a)
(where (1 — c)0 = 1), also form a spanning set for P,(r).

and consider the following

EXAMPLE 4.5 Consider the vector space M = M, , consisting of all 2 x 2 matrices,
four matrices in M:

1 9 D g 0 O B
Enz[o 0} 512:[0 0], EZl:[l 0]: Ezz”{o l]

Then clearly any matrix .4 in M can be written as a linear combination of the four matrices. For example,

7 8

Accordingly, the four matrices E,,, E|s, E,;, £, span M.

-6
A= ’:5 :l =5E“"‘6E12+7E2|+8E22

4.5 Subspaces

This section introduces the important notion of a subspace.

DEFINITION:  Let V be a vector space over a field K and let 7" be a subset of
of V if W is itself a vector space over K with respect to |

addition and scalar multiplication on V.
The way in which one shows that any set /¥ is a vector space is w
axioms of a vector space. However, if I is a subset of a m
amﬂmancauy hold in /¥, because they already hold in V. Simple crite:

THEOREM 4.2:  Suppose IV is a subset of a vector space V. Thel Wi
: two conditions hold:

(a) The zero vector 0
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all entries in 0 are equal. Further, suppose w and v are arbitrary vectors in U, say, w = (@, @, ) and (b, &)

Then, for any scalar k € R, the following are also vectors in U

utv=_(a+b, a+b atb) and ku = (ka, ka, ka)

Thus, U is a subspace of R’

(b) Let # be any plane in R? passing through the origin, as pictured in Fig. 4-1(b). Then 0 = (0,0, 0) belongs o W,
because we assumed ¥ passes through, the origin O. Further, suppose » and v are vectors in . Then » and ¥
may be viewed as arrows in the plane W emanating from the origin O, as in Fig. 4-1(b). The sum w + v and any
multiple ku of u also lie in the plane W. Thus, W is a subspace of R’

(®)

EXAMPLE 4.7

(a) LetV=M,',,,thevectorspaceofnxnm&ices.wwlbe&nnbﬂdd u
¥, be the subset of all symmetric matrices. Then W, is a subspace of ¥, becau
and W, is closed under matrix addition and scalar multiplication; that is, the s
triangular matrices are also triangular. Similarly, ¥, is a subspace of

(b) Let ¥ = P(1), the vector space P() of polynomials. Then the space
may be viewed as a subspace of P(). Let Q(r) be the collection
example, the following are polynomials in_Q(t): :

pr=3+42 - 56 and ‘p;=6—7li‘r w-lv
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Solution Space of a Homogeneous System

Consider a system 4X = B of linear equations in 7 unknowns. Then every solution u may be viewed as a

vector in K”. Thus, the solution set of such a system is a subset of K". Now suppose the system 1s

homogeneous; that is, suppose the system has the form AX = 0. Let W be its solution set. B'ecause

A0 = 0, the zero vector 0 € W. Moreover, suppose¢ and v belong to W. Then u and v are solutions of

AX = 0, or, in other words, Au =0 and Av = 0. Therefore, for any scalars a and b, we have

A(au+bv)=aAu+bAv=aO+bO=O+O:O

Thus, au + bv belongs to I, because it is a solution of AX = 0. Accordingly, W is a subspace of K.

We state the above result formally.

THEOREM 4.4:  The solution set 7 of a homogeneous system AX = 0 in n unknowns is a subspace
at X°.

We emphasize that the solution set of a nonhomogeneous system AX = B is not a subspace of K”. In
fact, the zero vector 0 does not belong to its solution set.

4.6 Linear Spans, Row Space of a Matrix

Suppose u, iy, . . ., i, are any vectors in a vector space V. Recall (Section 4.4) that any vector of the
form au; + ayu, + - - - + a,,u,,, where the g, are scalars, is called a linear combination of uy,u, . . ., Uy,.
The collection of all such linear combinations, denoted by

span(uy, 4y, . .« , Up) or  span(y;)

is called the linear span of uy,u,, ..., u,.

Clearly the zero vector 0 belongs to span(x;), because

0=0u; +0u; +---+Ou,
Furthermore, suppose v and v/ belong to span(y;), say,

v=au +auy+ - +auu, and v =bjuy + by + - + bty
Then,

v+ = (a; + b))uy + (ay + by)uy + -+ + (@, + by )t
and, for any scalar £ € K, '

kv = kaju; + kayu, + - - - + ka,u,,

Thus, v+ ¢/ and kv also belong to span(y;). Accordingly, span(y;) is a subspace of V.-

More generally, for any subset S of ¥, span(S) consists of all linear combinations of vectors in S or,
when § = ¢, span(S) = {0}. Thus, in particular, S is a spanning set (Section 4.4) of span(S).

The following theorem, which was partially proved above, holds.

THEOREM 4.5:  Let S be a subset of a vector space V.
(1) Then span(S) is a subspace of ¥ that contains S.
(ii) If W is a subspace of ¥ containing S, then span(,
Condition (ii) in theorem 4.5 may be interprete
V containing S.
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(a)
Figure 4-2

(b) Letu and v be vectors in R? that are not multiples of each other. Then span(u, v) i the plane through the ongmn

O and the endpoints of « and v as shown in Fig. 4-2(b).

(c) Consider the vectors €, = (1,0,0), &; = (0, 1,0), e; = (0,0, 1)in R®. Recall [Example 4.1(a)] that every vector
in R® is a linear combination of e, ey, ;. That is, e, €;, ey form a spanning set of R’. Accordingly,

span(e;, e, €3) = R’

Row Space of a Matrix

Let 4 = [a;] be an arbitrary m X 1 matrix over a field K. The rows of 4,

R, :(alhalZ?"'aaln)a R2=(a217a22a'--)a2n), sy Ry = (@1 Gm2s - - - +Omen)

may be viewed as vectors in K™; hence, they span a subspace of K" called the row space of A and denoted
by rowsp(A). That is,

rowsp(4) = span(Ry, Ry, - - - * &

Analagously, the columns of A may be viewed as vectors in K™ called the column space of A and denoted

by colsp(A). Observe that colsp(A) = rowsp(4”).
Recall that matrices 4 and B are Tow equivalent, written 4 ~ B, if B can be obtained from A by a

sequence of elementary row operations. Now suppose M is the matrix obtained by applying one of the
following elementary row operations on a matrix 4:

(1) Interchange R; and R;, (2) Replace R; by kR;, (3) Replace R; by kR; + R;
Then each row of M is a row of A or a linear combination of rows of A. Hence, the row space of M is
contained in the row space of A. On the other hand, we can apply the inverse elementary row operation on

M to obtain 4; hence, the row space of 4 is contained in the row space of M. Accordingly, 4 and M have
the same row space. This will be true each time we apply an elementary row operation. Thus, we have

proved the following theorem.

THEOREM 4.6: Row equivalent matrices have the same row space.

We are now able to prove (Problems 4.45-4.47) basic results on row equivalence (which first
appeared as Theorems 3.7 and 3.8 in Chapter 3).

THEOREM 4.7:  Suppose 4 = la;) and B = [b;) are row equivalent echelon matrices with respective
pivot entries

aljliaijv'"aU'r and blk,?b2k2)"'1bsk_‘

Then A4 and B have the same number of nonzero rows—that is, ¥ = s—and their
pivot entries are in the same positions—that is, j; = b=k h =k

THEOREM 4.8:  Suppose 4 and B are row canonical matrices. Then 4 and B have the same row space
if and only if they have the same nonzero rows.
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COROLLARY 4.9: Every matrix 4 is row equivalent to a unique matrix in row canonical form.

We apply the above results in the next example.

EXAMPLE 4.9 Consider the following two sets of vectors in R:
¥ =(1!2a"‘1a3)$ u2=(2347]v'—2)v u3=(3?6’3!_7)
wy = (1,2,—4,11), wy = (2,4,-5,14)

Let U = span(u;) and W = span(w;). There are two ways to show that U = W’

(a) Show that each u, is a linear combination of w, and w,, and show that each w; is a linear combination of ;. u;,

u;. Observe that we have to show that six systems of linear equations are consistent.

(b) Form the matrix A whose rows are u,, uy, i3 and row reduce 4 to row canonical form, and form the matrix B

whose rows are w; and w, and row reduce B to row canonical form:

{2~ 3 P2 4 3 130}
A= 12 4 —2~003—8~001_§.
F s 1] 00 6 -16 B o0 8
B_[12—4 1 I 2 -4 M P50 3
. v s g e oo -~}

Because the nonzero rows of the matrices in row canonical form are identical, the row spaces of 4 and B are

equal. Therefore, U = W.

Clearly, the method in (b) is more efficient than the method in (a).

4.7 Linear Dependence and Independence

lowing defines the notion of linear dependence and
presses mentioning K when the field is understood.)
tics in general.

Let ¥ be a vector space over a field K. The fol

independence of vectors over K. (One usually sup
This concept plays an essential role in the theory of linear algebra and in mathema

DEFINITION:  We say that the vectors vy, Uy, ..., Un in V are linearly dependent if there exist scalars
a,,ay, ..., a, in K, not all of them 0, such that

ayvy +agvy 4+ 8y, =0
Otherwise, we say that the vectors are linearly independent.
The above definition may be restated as follows. Consider the vector equation .

X A Xty + XUy =0 (*)
where the x's are unknown scalars. This equation always has the zero solution x, =0,
¥y = 0,....x, = 0. Suppose this is the only solution; that is, suppose we can show:

U+ Xt 4+ X0, =0  implies im0, Z=0, ..., x=0

Then the vectors v,, vy, . . ., v, are linearly independent, On the other hand, suppose the equation (*) has
a nonzero solution; then the vectors are linearly dependent.
Aset § = {u,,...,1,) of vectors in ¥ is linearly dependent or independent according to whether

hma.g,....n.mlhaﬂydepmdentorindapeth.
M%ﬁ.ﬁe{mhwyhpmdmmmdmtmo&ngmwhmmwmdo
dependent.

Bt exist vectors v,, vy, ..., vy in § that are linearly
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The following remarks follow directly from the above definition.

. Rle“:iark 1: Suppose 0 is one of the vectors vy, vy,..., Uy, SAY 1) = 0. Then the vectors must be
early dependent, because we have the following linear combination where the coefficient of v, # U

lv, +0vy+ - +0v,=1-040+4 ok Qm D

Remark 2: Suppose v 1s a nonzero vector. Then v, by itself, is linearly independent, because

kv =0, v 0 implies kw0

Remark 3: Suppose two of the vectors vy, 1y, - U are equal or one 1s @ scalar multiple of the
other, say v, = kuv,. Then the vectors must be linearly dependent, because we have the followmg linear

combination where the coefficient of vy # 0
v, — kv +0vy + - 4 Ov, =0

Remark 4: Two vectors v, and v, are linearly dependent if and only if one of them is 2 multiple of

the other.
Remark 5: If the set {v;,..., v,,} is linearly independent, then any rearrangement of the vectors
{9, Vs -+ v; } is also linearly independent.

Remark 6: If a set S of vectors is linearly independent, then any subset of S s lincarly

independent. Alternatively, if S contains a linearly dependent subset, then S is linearly dependent

EXAMPLE 4.10
(a) Letu=(l, 1,0), v= (1,3,2), w=
3u+Sv—2w= 31,1,0) 3092 ~2(4,9,5) = (0,0,0) =0

(4,9,5). Then u, v, w are linearly dependent, because

(b) We show that the vectors u = (1,2,3), v= (2,5, 7),w=(1,3,5) are linearly independent. We form the vector
equation xu + yv + 2w = 0, where x, y, z are unknown scalars. This yields

1 2 1 0 x+2y+ z=0 x+2y+ z=0
w2t 4pl5]| +2l0} = 0 or x+5y+32=0 or y+ z=0
3 7 3 0 Ix+Ty+3z= =0

Back-substitution yields x = 0, y = 0, z = 0. We have shown that
xu+yv+zw=0 implies x=0 y=0 z=0

Accordingly, u, v, w are linearly independent.

(c) Let V be the vector space of functions from R into R. We show that the functions f(r) = sinf, gt =¢,
h(t) = ¢* are linearly independent. We form the vector (function) equation xf + yg + zh = 0, where x, y, z are
unknown scalars. This function equation means that, for every value of 1,

xsint + ye' +z2£2 =0

Thus, in this equation, we choose appropriate values of ¢ to easily get x =0,y = 0, z = 0. For example,
prefl

(1) Substi.tute t=0 to obtain x(0) + (1) +2(0) =0 or
(ii) Substitute 1 = 7  to obtain x(0) + 0(€") +z(n?) =0 o A=
(iii) Substitute t = m/2 to obtain x(1) + 0(e™/?) + 0(n?/4) =0 or x=0
We have shown

¥ +yg+af =0 implies x=0 y=0, z2=0

/

Accordingly, u, v, w are linearly independent.
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Linear Dependence in R®

Linear dependence in
the vector space ¥V = R? can be described geometrically as follows:

(a) Any two vectors u :
it and v in R3 are li - i
the origin O, as shown in Fig. ;?3;:)3%1}' dependent if and only if they lie on the same line through

(b) Any three vectors '
u) U, W 1n ‘_R3 a 1 , ¥ v, o
Seough B olllin O, 2 donn inrgig.nzgl(%)(‘icpmdcnt if and only if they lie on the same plane

Later, we will be
’ able t ; : 4
o show that any four or more vectors in R? are automatically linearly dependent.

(b) u, v, and w are linearly dependent.

(a) v and v are linearly dependent.

Figure 4-3

Linear Dependence and Linear Combinations

The notions of linear dependence and linear combinations are closely related. Specifically, for more than

one vector, we show that the vectors vy, Uz, -+ v,, are linearly dependent if and only if one of them is a

linear combination of the others.
Suppose, say, U; is a linear combination of the others,

gty + o T Al Bty T U
Then by adding —v; to both sides, we obtain
gy, + o F Gt — Y T G tial 4ot Oy =0

where the coefficient of v, is not 0. Hence, the vectors are linearly dependent. Conversely, suppose the

vectors are linearly dependent, say,
blv,+---+ijj+---+bmvm:0, where b, #0
Then we can solve for v; obtaining
_ p-l = . -
'Uj = bj b]'U] i B bj bj_l'vj_l = bj lbj+1'l)j+1 D b] lbm'l)m

and so v, is a linear combination of the other vectors.
We now state a slightly stronger statement than the one above. This result has many important

consequences.

LEMMA 4.10:  Suppose two or more NONZEro Vectors vy, U, . . -, Uy 1€ linearly dependent. Then one
of the vectors is a linear combination of the preceding vectors; that is, there exists
k > 1 such that

o= Gt + Cath + o F Cp1 Vi1
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Linear Dependence and Echelon Matrices

Conside : .
onsider the following echelon matrix 4, whose pivots have been circled:

0
0
A= 10
0
0

cococoo®
coco@®w
cocowh
coQww

il
4
9
7
0

o@ o0 w

Observe that the rows R, Ry, R4 have 0’s in the second column below the nonzero pivot in Ry, and hence
any linear combination of Ry, Rj, R, must have 0 as ‘ts second entry. Thus, R, cannot be 2 linear
combination of the rows below it. Similarly, the rows R, and R4 have 0’s in the third cqlumn below the
nonzero pivot in R, and hence R, cannot be a linear combination of the rows below it._Fmally,.R3 _cannot
be a multiple of R4, because R, hasa 0 in the fifth column below the nonzero pivot 1n R;. V19wmg the
nonzero rows from the bottom up, Ry, Rs, Ry, R,, no row is a linear combination of the preceding TOws.
Thus, the rows are linearly independent by Lemma 4.10.

The argument used with the above echelon matrix A can be used for the nonzero rows of any echelon
matrix. Thus, we have the following very useful result.

THEOREM 4.11: The nonzero rows of a matrix in echelon form are linearly independent.

4.8 Basis and Dimension

First we state two equivalent ways to define a basis of a vector space V. (The equivalence is proved in
Problem 4.28.)

DEFINITION A: A set §= 5l v, - - st} of vectors is a basis of V if it has the following two
properties: (1) S is linearly independent. (2) S spans V.

DEFINITION B: A setS = {uy,u, .- ,u, } of vectors is a basis of V if every v € V' can be written
uniquely as a linear combination of the basis vectors.

The following is a fundamental result in linear algebra.

THEOREM 4.12:  Let ¥ be a vector space such that one basis has m elements and another basis has n
elements. Then m = n.

A vector space V is said to be of finite dimension n ot n-dimensional, written
dimV =n
if ¥ has a basis with n elements. Theorem 4.12 tells us that all b
elements, so this definition is well defined.
The vector space {0} is defined to have dimension 0.

S_uppf)se a vector space ¥ does not have a finite basis. Then V is said to be of infinite dimension or to
be infinite-dimensional.

The gbove fundamental Theorem 4.1
(proved in Problem 4.35).

ases of ¥ have the same number of

2 is a consequence of the following “‘replacement lemma’’

LEMMA 4.13:  Suppose {v;,v,,...,,} spans ¥, and suppose {wy, Wy, ..., Wy} is linearly indepen-
dent. Then m < n, and V is spanned by a set of the form

{W‘,W'Z, e .,H»'m. ’U"‘ ) Uiz’ s ’Ul-n_m}

Thus, in particular, n + 1 or more vectors in V' are linearly dependent.

Observe in the above lemma that we have re i i
_ placed m of the vectors in the spanni
independent vectors and still retained a spanning set. e T




Examples of Bases

This subsectior
s subsection presents in

‘ S 1IMPOrte ¢ A "
text. portant examples of bases of some of the main vector spaces appearing in this

a \) Ty . ND "N, . i
(#) Vector space K": Consider the following n vectors in K"
& =(1,0,0,0,...,0,0), e = (0,1,0,0,...,0,00 veiy & (0,0,0,0,...,0:1)

’]‘ ASe st (VPR o |1 i { s
|'h“1‘k vectors are linearly independent. (For example, they form s manix o Schelon i
urthermore, any vector u = (a,,dy,. .. a,) in K" can be written as a linear combination of the
above vectors. Specifically,

Vg8 + agey T Ayl

Accordingly, the vectors form a basis of K" called the usual or standard basis of K", Thus (as one
might expect), K" has dimension n. In particular, any other basis of K" has n elements

(b) Vector space M = M, of all  xs matrices: The following six matrices form a basis of the

vector space M,y of all 2 x 3 matrices over K:

W Wi et oo 000 0 0 0]
B oM aE a0 BT 0 0] 1P 1 o’ |0 # 3}
_of all r x s matrices, let E,, be the matrix with /j-entry |

More generally, in the vector space M = M, ’
Ac usual or standard basis of

and 0’s elsewhere. Then all such matrices form a basis of M, , called t
M, ,. Accordingly, dim M, =rs.

(¢) Vector space P, (1) of all polynomials of degree = 7 The set § = {1,4,,8,...,°} of n4 }

polynomials is a basis of P, (1). Specifically, any polynomial f(f) of degree < n can be expessed as a
lincar combination of these powers of 1, and one can show that these polynomials are linearly
independent. Therefore, dimP, (1) =n+ 1.

(d) Vector space P(1) of all polynomials: Consider any finite set 8 = {f,(0),f2(t),. .. Sult)} ©f
polynomials in P(¢), and let m denote the largest of the degrees of the polynomials, Then any
polynomial g(r) of degree exceeding m cannot be expressed as a linear combination of the elements of
S Thus. S cannot be a basis of P(¢). This means that the dimension of P(¢) is infinite. We note that the
infinite set ' = {1,,2,#,...}, consisting of all the powers of t, spans P(1) and is linearly
independent. Accordingly, S’ is an infinite basis of P(1).

Theorems on Bases
The following three theorems (proved in Problems 4.37, 4.38, and 4,39) will be used frequently.

THEOREM 4.14:  Let V be a vector space of finite dimension n, Then:
(i)  Any n+ 1 or more vectors in V are linearly dependent,

(1) A;u);, linearly independent set S = {uy,uy, ..., u,} with n elements is a basis
of V.

(i) Any spanning set 7 = {v;,v;,...,,} of V with n elements is a basis of V.

THEOREM 4.15:  Suppose S spans a vector space V. Then:

(i) Any maximum number of linearly independent vectors in 5 form a basis of V.

(1)) Suppose one deletes from § eve : ’ laati
. : ry vector that is a linear combination of
preceding vectors in S, Then the remaining vectors form a basis of V.
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THE : .
OREM 4.16:  Let J be a vector space of finite dimension and let § = {uy, g, -+ u,} be a set of

linearly independent vectors in V. Then S is part of a basis of V; that is, S may be
extended to a basis of V.
EXAMPLE 4.11
(a) The following four vectors in R* form a matrix in echelon form:
(1,1,1,1), 0,1.0.1), (6,0.1,1), eV 1

4
Thus, the vectors are linearly independent, and, because dim R* = 4, the four vectors form a basis ofR.

(b) The following n + 1 polynomials in P,(t) are of increasing degree:
1oL Bt Ui

Therefore, no polynomial is a linear combination of preceding polynomials; hence, the polynomials are linear
independent. Furthermore, they form a basis of P, (1), because dim P, (1) = n 4 L

(¢) Consider any four vectors in R3, say
(357, ~132,58),  (43,0,-17),  (521,-317,94), (328,—512,-731)

By Theorem 4.14(i), the four vectors must be linearly dependent, because they come from the three-dimensional

vector space R

Dimension and Subspaces

The following theorem (proved in Problem 4.40) gives the basic relationship between the dimension ofa
vector space and the dimension of a subspace.

THEOREM 4.17:  Let W be a subspace of an n-dimensional vector space V. Then dim W < n. In
particular, if dim W =n,then W =V.

EXAMPLE 4.12 Let /¥ be a subspace of the real space R*. Note that dim R® = 3. Theorem 4.17 tells us that the
dimension of W can only be 0, 1, 2, or 3. The following cases apply:

(a) If dim # = 0, then ¥ = {0}, a point.

(b) If dim W =1, then W is a line through the origin 0.
(¢) If dimW =2, then W is a plane through the origin 0.
(d) If dim W = 3, then W is the entire space R’

4.9 Application to Matrices, Rank of a Matrix

Let A4 be any m X n matrix over a field K. Recall that the rows of 4 may be viewed as vectors in K" and

that t_he; row space of 4, written rowsp(A), is the subspace of K" spanned by the rows of 4. The following
definition applies. -

DEFINITION: The rank of a matrix 4, written rank(4), is equal to the maximum number of linearly
independent rows of A or, equivalently, the dimension of the row space of 4. i

ﬁnl!h:«;all, oln the other hand, that.the columns of an m x n matrix 4 may be viewed as vectors in K™ and
e column space of 4, written colsp(A), is the subspace of K™ spanned by the columns of A.

Although m may not be e :
b qual to n—that is, the rows and columns of 4 may belong to diff ,
spaces—we have the following fundamental result. y g erent vector

THEOREM 4.18: The maximum numbe; of linearly independent rows of any matrix 4 is equal to the
maximum number of linearly independent columns of 4. Thus, the dimension of the

row space of 4 is equal to the dimension of the column space of 4.

Aceordingly, one could restate the above definition of the rank of 4 using columns instead of row
: s.
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‘m;‘n:‘ '““f?nsmmuhtf;z,,;“";"'ﬁﬂmm.awunmn“'
( pwounrecimlod)asmwhthnfmm‘:'hﬂmwm&%“
313 2
Amiﬁs"“ s 2
8T & 11y o =00 0 Q) 2
3N 59 4 6 6 66 66
4 uan 60060060

We solve the following four problems about the matrix 4, whers €, €. €, demote s :
(@) Find a basis of the row space of 4,

(b) Find each column C, of 4 that is a linear combination of preceding columns of 4
(¢) Find a basis of the column space of A.
(d) Find the rank of 4.

(a) We are given that 4 and B are row equivalent, so they have the same row space. Moseover, § is
echelon form, so its nonzero rows are linearly independent and hence form a basss of the row space
of B. Thus, they also form a basis of the row space of 4. That is,

basis of rowsp(4):  (1,2,1,3,1,2), (0,1,3,1,2,1}, (0.0.0.1,1.2)

(b) LetMi-[C,,CZ,...,C,,]themhmtmo“cmolﬁﬁnluh—dl.hﬁ..sﬂ-
M, are, respectively, the coefficient matrix and augmented matrix of the vector equation ‘

x]C] +12C2+ o v +xl—lcl«-| = C‘
Theorem 3.9 tells us that the system has a solution, or, equivalently, C, is & lncar com

the preceding columns of A if and only if rank(M,) = rank(M, ,), where ran
aMﬂMﬂuMﬁmdlﬁ Mﬁ:hi“dhm.

and
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Application to Finding a Basis for W - span(uy uy, . ... 4,)
Frequently, we are given a list § = {u,uy, ..., u,} of vectors in K’ and we want to find a basis fot the

subspace W of K" spanned by the given vectors—that is, a basis of
W = span(S) = span(u;, %, ..., u,)

The following two algorithms, which are essentially described in the above subsection, find such a basis
(and hence the dimension) of I’
Algorithm 4.1 (Row space algorithm)
Step 1. Form the matrix M whose rows are the given vectors
Step 2. Row reduce M to echelon form.
Step 3. Output the nonzero rows of the echelon matrix.

Sometimes we want to find a basis that only comes from the original given vectors I'he next algorithm
accomplishes this task.
Algorithm 4.2 (Casting-out algorithm)
Step 1. Form the matrix M whose columns are the given vectors.
Step 2. Row reduce M to echelon form.

Step 3. For each column C, in the echelon matrix without a pivot, delete (cast out) the vector u, from
the list S of given vectors.

Step 4. Output the remaining vectors in S (which correspond to columns with pivots)
We emphasize that in the first algorithm we form a matrix whose rows are the given vectors, whereas
in the second algorithm we form a matrix whose columns are the given vectors.
EXAMPLE 4.13 Let 7 be the subspace of R® spanned by the following vectors:
y =il,2,1,8:2), u= (1,3,3,5,3), w=(3,8,7,13.8)
, =(1,4,6,9,.7) ug = (5,13, 183,25,19)

Find a basis of W consisting of the original given vectors, and find dim W,
Form the matrix M whose columns are the given vectors, and reduce M to echelon form:

1§ 2 8 i 1-8 1 4
2 -3 8 4 1§ gL 2 L0
M 1 3 7 6 13 k0 B 0 L 2
208 = o g0 0D O
2 o0 30 g 0 9 0

The pivots in the echelon matrix appear in columns Cy, C;, C;. Accordingly, we “'cast out’’ the vectors uy and u;

from_ the longx‘nal five vectors. ‘The remaining vectors u,, u,, us, which correspond to the columns in the echelon
matrix with pivots, form a basis of W, Thus, in particular, dim W = 3.

Remark: The justification of the casting-out algorithm is essentially described above, but we repeat

it again here for emphasis. The fact that column C; in the echelon matrix in Example 4.13 does not have a
pivot means that the vector equation

XUy + yuy = Uy

Easi 3 ;Orlrt'tlon, f;nd hence u; is a linear combination of u, and u,. Similarly, the fact that C; does not have
P eans that s is a linear combination of the preceding veetors. We have deleted each vector in the

original spanning set that is a linear combinati c : o
. : mbination of preceding vectors. Thus, the remainin ; p
linearly independent and form a basis of W. i Yesham

B
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o

| EXAMPLE 418 Consider the veetor space ¥ = '
@ Lot U be the vplane and let ¥ e the ve-plane, that i,

Uws {((0.00) abeR) W o ((0,b¢) MedR)
h#duwutml‘hﬂ

Thea R' = 1 0‘.WM\=MQI“~MﬂlW’
mmmmmt‘mmmmummmmhn*
L8N = (1,04 (04T  endaieo 0,8, 7) = (0, ~4.0) + 0.9.7)

(M) Let U be the x-plane and b B b the ani that i
Uw{(@b0) abeR) = W {00¢ €8 L
Now any vector (@ b ¢) @ l‘whm.:hmd-mnﬂ
way
(@, b ¢) = (0. ,0) 4 (0,0.¢)
Amw.l‘uhmmdtfdr;uml’

-iuul-m‘ i one and only one

sUaW

General Direct Sums
mmdaﬁm”hwnmhuwhhmm,m‘l’hﬁ-“

swm of subspaces w,,W,, ..., W, written
l'n"‘.’,"“.',

if every vector v € ¥ can be written
vmw Wt W

*w,ll'..m(',,....w,('.

mwm—m

THEOREM 4.22: P '-’.’."'.’phhah“h " :
D s st of B, Tom g R

(a) m-n:-u&umm.r.
(b) 1f each S, is a basis of W, then U, S is a basis of ¥
© dim¥ = dmW, +dimW, + -+ dm W,
Suppoms ¥ =Wy + Wy o+ W, and dim ¥ = ¥, dim W, Then
vemome oK,

in one and only one way as

m“ «} prsny . Then
2 o e bnse ’."hl.% any vector v € V¥
of




