
.



Software Requirement Specifications
• The production of the requirements stage of the software

development process is Software Requirements Specifications
(SRS) (aka requirements document)

• SRS is a formal report, which acts as a representation of software
that enables the customers to review whether it (SRS) is according
to their requirements

• The SRS is a specification for a specific software product, program,
or set of applications that perform particular functions in a specific
environment.

• It serves several goals depending on who is writing it. The client or
developer of the system.



Software Requirement Specifications
• Characteristics/Features of good SRS



Requirements Analysis
• Requirement analysis is significant and essential activity after

elicitation.

• We analyze, refine, and scrutinize the gathered requirements to
make consistent and unambiguous requirements.



Requirements Analysis
Context diagram - The context diagram defines the boundaries
and interfaces of the proposed systems with the external world. It
identifies the entities outside the proposed system that interact
with the system



Requirements Analysis
Prototype (optional): One effective way to find out what the
customer wants is to construct a prototype, something that looks
and preferably acts as part of the system they say they want.
Model the requirements: various graphical representations of
the functions, data entities, external entities, and the relationships
between them.
The graphical view may help to find incorrect, inconsistent,
missing, and superfluous requirements. Data Flow diagram,
Entity-Relationship diagram, Data Dictionaries, State-transition
diagrams, etc.
Finalise the requirements: The inconsistencies and ambiguities
have been identified and corrected. The flow of data amongst
various modules has been analyzed. Elicitation and analyze
activities have provided better insight into the system.



Data Flow Diagrams
A Data Flow Diagram (DFD) - visual representation of the information flows
within a system. The objective of a DFD is to show the scope and
boundaries of a system as a whole.
observations about DFDs

1.All names should be unique.
2.DFD is not a flow chart. Arrows in a flow chart represents the order of

events; arrows in DFD represents flowing data. A DFD does not involve
any order of events.

3.Suppress logical decisions. If we ever have the urge to draw a diamond-
shaped box in a DFD, suppress that urge! A diamond-shaped box is used
in flow charts to represents decision points with multiple exists paths of
which the only one is taken. This implies an ordering of events, which
makes no sense in a DFD.

4.Do not become bogged down with details. Defer error conditions and error
handling until the end of the analysis.



Data Flow Diagrams
Levels in Data Flow Diagrams (DFD)

0-level DFD-fundamental system model, or context diagram
represents the entire software requirement as a single bubble
with input and output data denoted by incoming and outgoing
arrows.



Data Flow Diagrams
Levels in Data Flow Diagrams (DFD)

1-level DFD-In 1-level DFD, a
context diagram is decomposed
into multiple bubbles/processes.
main objectives of the system
is highlighted and break down
of the high-level process of
0-level DFD into sub-processes.



Data Flow Diagrams
Levels in Data Flow Diagrams (DFD)

2-level DFD- used to project or record the specific/necessary
detail about the system's functioning.



Data Flow Diagrams
Levels in Data Flow Diagrams (DFD) -2-level DFD



Entity-Relationship Diagrams
ER-modeling is a data modeling method used in software
engineering to produce a conceptual data model of an
information system.
Purpose of ERD
• The database analyst gains a better understanding of the data to be 

contained in the database through the step of constructing the ERD.
• The ERD serves as a documentation tool.
• The ERD is used to connect the logical structure of the database to 

users. In particular, the ERD effectively communicates the logic of the 
database to users.



Entity-Relationship Diagrams
Components of an ER Diagrams
1. Entities - real-world object, either animate or inanimate, that can be merely

identifiable
entity set- collection of related types of entities.

2. Attributes – properties of an entity
- Key attribute -Composite attribute -Derived attribute
- Single-valued attribute -Multi-valued attribute

3. Relationships- association among entities
Relationships set- relationships of a similar type
Degree of the relationship - The number of participating entities in a relationship 
Unary (degree1)
Binary (degree2)
Ternary (degree3)

- Cardinality – one-to-one, one-to-many, many-to-one, many-to-many



.



Software Design
Software design is a mechanism to transform user requirements
into some suitable form, which helps the programmer in software
coding and implementation.

Software design principles are concerned with providing means to
handle the complexity of the design process effectively

- Problem Portioning
- Abstraction
- Modularity (read up- advantage and disadvantage)
- Top-Down and Bottom-Up Strategy



Coupling and Cohesion
Coupling is the degree of interdependence between software modules. Two 
modules that are tightly coupled are strongly dependent on each other.

A good design is the one that has low coupling.



Coupling and Cohesion
Coupling is the degree of interdependence between software modules. Two 
modules that are tightly coupled are strongly dependent on each other.



Coupling and Cohesion
cohesion defines the degree to which the elements of a module belong 
together. 

cohesion measures the strength of relationships between pieces of 
functionality within a given module.



Coupling and Cohesion
Difference between coupling and cohesion



Design

Functional Design

Object Oriented Design

User Interface Design



.



Coding
The coding is the process of transforming the design of a system into a
computer language format.

This coding phase of software development is concerned with translating
design specification into the source code.

Coding Standards and Guidelines
• Proper and consistent indentation
• Inline comments
• Rules for limiting the use of global
• Naming conventions
• Error return conventions and exception handling system
• Spacing
• Length of any function should not be too long



Programming Style
Programming style refers to the technique used in writing the source
code for a computer program

The goal of good programming style is to provide understandable,
straightforward, elegant code.

The programming style used in a various program may be derived from
the coding standards or code conventions of a company or other
computing organization, as well as the preferences of the actual
programmer.



Programming Style
Some general rules or guidelines in respect of programming style:
• Clarity and simplicity of Expression.
• Naming style should not be cryptic and non-representative.
• Single entry and single exit constructs are desirable
• Information secure in the data structures should be hidden from the rest of

the system where possible
• Deep nesting of loops and conditions should be avoided as it greatly harm

the static and dynamic behavior of a program
• Make heavy use of user-defined data types like enum, class, structure, and

union. They make code easy to write and understand
• The module size should be uniform. If the module size is too large, it is not

generally functionally cohesive. If the module size is too small, it leads to
unnecessary overheads.



.



Software Maintenance
The goal is to modify and update software application after delivery to
correct errors and to improve performance.
Software is a model of the real world. When the real world changes,
the software require alteration wherever possible.
Need for Maintenance
• Correct errors
• Change in user requirement with time
• Changing hardware/software requirements
• To improve system efficiency
• To optimize the code to run faster
• To modify the components
• To reduce any unwanted side effects.



Types of Software Maintenance
1. Corrective Maintenance: aims to correct any remaining errors regardless of 
where they may cause specifications, design, coding, testing, and 
documentation, etc.

2. Adaptive Maintenance: contains modifying the software to match changes 
in the ever-changing environment.

3. Preventive Maintenance: process by which we prevent our system from 
being obsolete. It involves reengineering & reverse engineering in which an 
old system with old technology is re-engineered using new technology. 

4. Perfective Maintenance: It defines improving processing efficiency or 
performance or restricting the software to enhance changeability. 



Causes of Software Maintenance Problems
• Lack of Traceability

• Lack of Code Comments

• Obsolete Legacy Systems



Software Quality

• Is a set of activities for ensuring quality in software engineering
process.

• It ensures that developed software meets and complies with defined
specifications.

• It accounts for a large amount of development time.
• It guarantees a level of quality for the end client.
• It helps development team identify problems early by
testing



Software Quality
Software quality product is defined in term of its fitness of purpose. A
quality product does precisely what the users want it to do.
Example: Consider a functionally correct software product. That is, it
performs all tasks as specified in the SRS document. But, has an almost
unusable user interface. Even though it may be functionally right, we
cannot consider it to be a quality product.
Modern view of a quality associated with a software product
• Portability
• Usability
• Reusability
• Correctness
• Maintainability



.



Software Testing
• The intent of software testing is to uncover software

bugs/errors/defects.

• The goal of software testing is to demonstrate to the developer and

the customer that the software meets its requirements.

• Software testing can only show the presence of errors, not their

absence.

• Software testing is part of a broader process of software verification

and validation.



Software Testing Process
• Test strategy and test plan: planning to execute tests; selecting test

approach; processes to follow; selecting tools and techniques;

documenting plan, setting up test environment; identifying risks and

dependencies; scheduling test.

• Test design: designing test suite(collection of test cases) in line with

the requirements specified.

• Test execution: application of tests at various stages of development.

• Test closure: 100% requirements coverage; a large amount of test

pass; all critical defects discovered to be fixed.



Stages of Software Testing
• Development Testing: the system is tested during development to

discover bugs and defects. Involves system designers and

programmers .

• Release Testing: The aim of release testing is to check that the system

meets the requirements of system stakeholders. Involves a separate

testing team. Tests the complete version.

• User Testing: where users or potential users of a system test the

system in their own environment.



Methods of Software Testing
• Manual testing: a tester runs the program with some test data and

compares the results to their expectations.

• Automated testing: the tests are encoded in a program that is run

each time the system under development is to be tested.

• Automated testing executes faster than manual testing, especially

when it involves re-running tests.

• In practice, the testing process usually involves a mixture of manual

and automated testing.


