Software
Requirements

Software Requirement Specifications

 The production of the requirements stage of the software
development process is Software Requirements Specifications
(SRS) (aka requirements document)

SRS is a formal report, which acts as a representation of software
that enables the customers to review whether it (SRS) is according
to their requirements

 The SRS is a specification for a specific software product, program,
or set of aptpllcatlons that perform particular functions in a specific
environment.

* It serves several goals depending on who is writing it. The client or
developer of the system.

Software Requirement Specifications

» Characteristics/Features of good SRS

.
£
5
c2
ﬂu
}:ﬁ\
o 2
-]
[
=

Requirements Analysis

* Requirement analysis is significant and essential activity after
elicitation.

* We analyze, refine, and scrutinize the gathered requirements to
make consistent and unambiguous requirements.

Draw the Context
diagram

A J

Develop Prototypes
(Optional)

' Model the
k4
| Fma‘lise the ‘

Requirements Analysis

Context diagram - The context diagram defines the boundaries
and interfaces of the proposed systems with the external world. It
identifies the entities outside the proposed system that interact

with the system

Administrator
Subject

information Marks entry
entry operator

Student
information

entry Marks entry

tudent result
management
system

Student performance
reports generated

Student information
reports generated

Marksheet
generated

Requirements Analysis

Prototype (optional): One effective way to find out what the
customer wants is to construct a prototype, something that looks
and preferably acts as part of the system they say they want.

Model the requirements: various graphical representations of
the functions, data entities, external entities, and the relationships

between them.

The graphical view may help to find incorrect, inconsistent,
missing, and superfluous requirements. Data Flow diagram,
Entity-Relationship diagram, Data Dictionaries, State-transition
diagrams, etc.

Finalise the requirements: The inconsistencies and ambiguities
have been identified and corrected. The flow of data amongst
various modules has been analyzed. Elicitation and analyze
activities have provided better insight into the system.

Data Flow Diagrams

A Data Flow Diagram (DFD) - visual representation of the information flows
within a system. The objective of a DFD is to show the scope and
boundaries of a system as a whole.

observations about DFDs
1.All names should be unique.

2.DFD is not a flow_chart. Arrows in a flow chart represents the order of
events; arrows in DFD represents flowing data. A DFD does not involve
any order of events.

3.Suppress logical decisions. If we ever have the urge to draw a diamond-
shaped box in a DFD, supPress that urge! A diamond-shaped box is used
in flow charts to represents decision points with multiple exists paths of
which the only one is taken. This implies an ordering of events, which
makes no sense in a DFD.

4.Do not become bogged down with details. Defer error conditions and error
handling until the end of the analysis.

Data Flow Diagrams

Levels in Data Flow Diagrams (DFD)

O-level DFD-fundamental system model, or context diagram
represents the entire software requirement as a single bubble
with input and output data denoted by incoming and outgoing

a rrOWS Data entry
= operator Marks entry operator
Subject info
Student info s Marks
X1 ety entry
Administrator Student result
:’f management
User account
maintainence T
X2
Fig: Level-0 DFD.
A7 Y
Student info Marksheets Student
reports generated Performance
generated reports generated

Fig: Level-0 DFD of result management system

Data Flow Diagrams
Levels in Data Flow Diagrams (DFD)

{ Enter User id, Password,role

Marks details

1-level DFD-In 1-level DFD, a

context diagram is decomposed

into multiple bubbles/processes. Ve o doe
main objectives of the system

IS highlighted and break down
of the high-level process of
O-level DFD into sub-processes.

Administrator — User info entry —)— rr:‘;‘;::!m

Fig: Level-1 DFD of result management system

Data Flow Diagrams

Levels in Data Flow Diagrams (DFD)

2-level DFD- used to project or record the specific/necessary
detail about the system's functioning.

1.User Account Maintenance
2. Login

Administrator Access User info
The level 2 DFD of this process is given below:

User Account info

Display Retrieve User info Retrieve User info

User Account
info

Enter User ID, Enter User ID,

User Account Info
Enter/Update/Delete User info Data Entry Pa!iiword.ﬁﬂie‘; ‘ Password,Role . .. o
Operator

; Enter User ID,
Validate/ Marks Entry Password,Role

Process Clerk
User info Update/Delete Enter User ID, Password, Role
User info Administrator

Data Flow Diagrams

Levels in Data Flow Diagrams (DFD) -2-level DFD

3. Student Information Management

Data entry Access User info
Operator

Retrieve student infio

Student Info
Enter/Update/Delete User info

Validat
Pro

Update/Delete
User info

4. Subject Information Management
The level 2 DFD of this process ks given below:

Access Subject info
Data Entry

Operator

Retrieve Subject info

Subject Info
Enter/Update/Delete Subject info

& Update/Delete
Subject info subject Infa

5. 5tudent’s Subject Choice Management
The Level 2 DFD of this Process s glven below:

Subject info
Retiieve Subject Info

Data Entry Operator

Access Subject
Details

Student info

Retrieve Student]
Access Student Details

infa

Enter/Update/Delete
Student's cholces of Subject

Validate! Process
student’s Subject
Chaices

Update/Delete Choices

Student’s Subject
Student Report Choice Detakls
Generated

6. Marks Information Managment
The Level 2 DFD of this Process is given belows

Marks entry i Display Student
clerk Access Marks info LN Retrieve Markinfo Performance
Report
Enter/Update/Delote Marks =
pd Parks Delails
Validate/ Marks Sh
Retrieve Student info Process Update/Delete Marks T Ts i
Marks info

Retrieve Subject info

Retrieve Student’s
Subject choices

r

Student Details Subject info

Student's Subject
choice Details

Entity-Relationship Diagrams

ER-modeling is a data modeling method used in software
engineering to produce a conceptual data model of an
information system.

Purpose of ERD

* The database analyst gains a better understanding of the data to be
contained in the database through the step of constructing the ERD.

e The ERD serves as a documentation tool.

* The ERD is used to connect the logical structure of the database to
users. In particular, the ERD effectively communicates the logic of the
database to users.

Entity-Relationship Diagrams

Components of an ER Diagrams

1. Entities - real-world object, either animate or inanimate, that can be merely
identifiable

entity set- collection of related types of entities.

2. Attributes — properties of an entity
- Key attribute -Composite attribute -Derived attribute
- Single-valued attribute -Multi-valued attribute

3. Relationships- association among entities
Relationships set- relationships of a similar type
Degree of the relationship - The number of participating entities in a relationship
Unary (degreel)
Binary (degree2)
Ternary (degree3)

- Cardinality — one-to-one, one-to-many, many-to-one, many-to-many

Software Design

Software Design

Software design is a mechanism to transform user requirements
into some suitable form, which helps the programmer in software
coding and implementation.

Software design principles are concerned with providing means to
handle the complexity of the design process effectively

- Problem Portioning

- Abstraction

- Modularity (read up- advantage and disadvantage)
- Top-Down and Bottom-Up Strategy

Coupling and Cohesion

Coupling is the degree of interdependence between software modules. Two
modules that are tightly coupled are strongly dependent on each other.

Module Coupling

O O
O O

Uncoupled: no Loosely Coupled: Highly Coupled:
dependencies Some dependencies Many dependencies

A good design is the one that has low coupling.

Coupling and Cohesion

Coupling is the degree of interdependence between software modules. Two
modules that are tightly coupled are strongly dependent on each other.

Types of Modules Coupling

There are various types of module Coupling are as follows:

- R No Direct Coupling m
" RIS R LES Data Coupling A

& E xternal Coupling

Coupling and Cohesion

cohesion defines the degree to which the elements of a module belong
together.

cohesion measures the strength of relationships between pieces of
functionality within a given module.

Functional Cohesion Best
A
(9P Sequential Cohesion
- Communication
Procedural Cohesion
Temporal Cohesion

Coin Cidental Cohesion Worst

Coupling and Cohesion

Difference between coupling and cohesion

Coupling

Coupling is also called Inter-Module

Binding.

Coupling shows the relationships
between modules.

Coupling shows the relative
independence between the
modules.

While creating, you should aim for

low coupling, ie., dependency

among modules should be less.

In coupling, modules are linked to

the other modules.

Cohesion

Cohesion is also called Intra-Module Binding.

Cohesion shows the relationship within the module.

Cohesion shows the module's relative functional strength.

While creating you should aim for high cohesion, ie, a

cohesive component/ module focuses on a single function
little interaction with other

(i.e., single-mindedness) with

modules of the system.

In cohesion, the module focuses on a single thing.

Design

Functional Design
Object Oriented Design

User Interface Design

Coding

Coding

The coding is the process of transforming the design of a system into a
computer language format.

This Coding_fpha_se of software development is concerned with translating
design specification into the source code.

Coding Standards and Guidelines

* Proper and consistent indentation

Inline comments

Rules for limiting the use of global

* Naming conventions

Error return conventions and exception handling system
Spacing

Length of any function should not be too long

Programming Style

Programming style refers to the technique used in writing the source
code for a computer program

The goal of good programming style is to provide understandable,
straightforward, elegant code.

The programming style used in a various program may be derived from
the coding standards or code conventions of a company or other
computing organization, as well as the preferences of the actual
programmet.

Programming Style

Some general rules or guidelines in respect of programming style:
* Clarity and simplicity of Expression.

* Naming style should not be cryptic and non-representative.

* Single entry and single exit constructs are desirable

* Information secure in the data structures should be hidden from the rest of
the system where possible

* Deep nesting of loops and conditions should be avoided as it greatly harm
the static and dynamic behavior of a program

* Make heavy use of user-defined data types like enum, class, structure, and
union. They make code easy to write and understand

* The module size should be uniform. If the module size is too large, it is not
generally functionally cohesive. If the module size is too small, it leads to
unnecessary overheads.

Software
Maintenance

Software Maintenance

The goal is to modify and update software application after delivery to
correct errors and to improve performance.

Software is a model of the real world. When the real world changes,
the software require alteration wherever possible.

Need for Maintenance

* Correct errors

* Change in user requirement with time

* Changing hardware/software requirements
* To improve system efficiency

* To optimize the code to run faster

* To modify the components

* To reduce any unwanted side effects.

Types of Software Maintenance

1. Corrective Maintenance: aims to correct any remaining errors regardless of
where they may cause specifications, design, coding, testing, and
documentation, etc.

2. Adaptive Maintenance: contains modifying the software to match changes
in the ever-changing environment.

3. Preventive Maintenance: process by which we prevent our system from
being obsolete. It involves reengineering & reverse engineering in which an
old system with old technology is re-engineered using new technology.

4. Perfective Maintenance: It defines improving processing efficiency or
performance or restricting the software to enhance changeability.

Causes of Software Maintenance Problems

Software Maintenance Process

* Lack of Traceability

,i, / Correct Program error
Determine maintenance » Add new Capabilities
Objective \i Delete Obsolete features
* Lack of Code Comments l Phase 1 Optimization
A Complexity
Program Understanding & Darasnantation
* Obsolete Legacy Systems l Phase 2 Sk
Gnrerate Particular - i
Maintenance Proposal > Esberalbllity
Phase 3
A
Account for ripple effect > Stability
Phase 4
w
Testing » Testability

Pass testing
No Yes

Software Quality

* Is a set of activities for ensuring quality in software engineering
process.

* It ensures that developed software meets and complies with defined
specifications.

* |t accounts for a large amount of development time.
* [t guarantees a level of quality for the end client.

* It helps development team identify problems early by
testing

Software Quality

Software quality product is defined in term of its fitness of purpose. A
quality product does precisely what the users want it to do.

Example: Consider a functionally correct software product. That is, it
performs all tasks as specified in the SRS document. But, has an almost
unusable user interface. Even though it may be functionally right, we
cannot consider it to be a quality product.

Modern view of a quality associated with a software product
* Portability

 Usability

* Reusability

* Correctness

* Maintainability

Software Testing

Software Testing

* The intent of software testing is to uncover software

bugs/errors/defects.

* The goal of software testing is to demonstrate to the developer and

the customer that the software meets its requirements.

e Software testing can only show the presence of errors, not their

absence.

» Software testing is part of a broader process of software verification

and validation.

Software Testing Process

» Test strategy and test plan: planning to execute tests; selecting test
approach; processes to follow; selecting tools and techniques;
documenting plan, setting up test environment; identifying risks and

dependencies; scheduling test.

* Test design: designing test suite(collection of test cases) in line with

the requirements specified.
» Test execution: application of tests at various stages of development.

* Test closure: 100% requirements coverage; a large amount of test

pass; all critical defects discovered to be fixed.

Stages of Software Testing

* Development Testing: the system is tested during development to
discover bugs and defects. Involves system designers and

programmers .

* Release Testing: The aim of release testing is to check that the system
meets the requirements of system stakeholders. Involves a separate

testing team. Tests the complete version.

* User Testing: where users or potential users of a system test the

system in their own environment.

Methods of Software Testing

* Manual testing: a tester runs the program with some test data and

compares the results to their expectations.

* Automated testing: the tests are encoded in a program that is run

each time the system under development is to be tested.

* Automated testing executes faster than manual testing, especially

when it involves re-running tests.

* In practice, the testing process usually involves a mixture of manual

and automated testing.

