Software Metrics

Software Metrics

e A software metric is a measure of software characteristics which are
measurable or countable.

e Software metrics are valuable for many reasons, including measuring software
performance, planning work items, measuring productivity, and many other
uses.

Software metrics can be classified into two types as follows:
1. Product Metrics: These are the measures of various characteristics of the
software product. The two important software characteristics are:

* Size and complexity of software.

* Quality and reliability of software.
2. Process Metrics: These are the measures of various characteristics of the
software development process. For example, the efficiency of fault detection.

They are used to measure the characteristics of methods, techniques, and tools
that are used for developing software.

Software Metrics
Types of Metrics

* Internal metrics: Internal metrics are the metrics used for measuring
properties that are viewed to be of greater importance to a software
developer. For example, Lines of Code (LOC) measure.

* External metrics: External metrics are the metrics used for measuring
properties that are viewed to be of greater importance to the user, e.g.,
portability, reliability, functionality, usability, etc.

* Hybrid metrics: Hybrid metrics are the metrics that combine product
process, and resource metrics. For example, cost per FP (Function Pomtj
Metric.

* Project metrics: Project metrics are the metrics used by the project
manager to check the project's progress. Data from the past projects are
used to collect various metrics, like time and cost

Software Metrics - Advantage of Software Metrics

Comparative study of various design methodologies of software systems.

For analysis, comparison, and critical study of different programming languages
concerning their characteristics.

In comparing and evaluating the capabilities and productivity of people involved
in software development.

In the preparation of software quality specifications.

In the verification of compliance of software systems requirements and
specifications.

In making inferences about the effort to be put into the design and development
of the software systems.

In getting an idea about the complexity of the code.

In making decisions regarding whether further division of a complex module is to
be done or not.

In comparison and making design tradeoffs between software development and
maintenance cost.

Software Metrics

Disadvantage of Software Metrics

* The application of software metrics is not always easy, and in some cases, it is
difficult and costly.

« The verification and justification of software metrics are based on
historical/empirical data whose validity is difficult to verify.

* These are useful for managing software products but not for evaluating the
performance of the technical staff.

* The definition and derivation of Software metrics are usually based on assuming
which are not standardized and may depend upon tools available and working
environment.

* Most of the predictive models rely on estimates of certain variables which are
often not known precisely.

Size Oriented Metrics - LOC Metrics

* It is one of the earliest and simplest metrics for calculating the size of the
computer program. It is generally used to calculate and compare the productivity
of programmers.

The following are the points regarding LOC measures:
* |n size-oriented metrics, LOC is considered to be the normalization value.

* It is an older method that was developed when FORTRAN and COBOL
programming were very popular.

* Productivity is defined as KLOC / EFFORT, where effort is measured in person-
months.

* Size-oriented metrics depend on the programming language used.

* As productivity depends on KLOC, assembly language code will have more
productivity.

Size Oriented Metrics

* LOC measure requires a level of detail which may not be practically achievable.
* The more expressive is the programming language, the lower is the productivity.

* LOC method of measurement does not apply to projects that deal with visual
(GUI-based) programming. As already explained, Graphical User Interfaces (GUIs)
use forms basically. LOC metric is not applicable here.

* It requires that all organizations must use the same method for counting LOC. This
is so because some organizations use only executable statements, some useful
comments, and some do not. Thus, the standard needs to be established.

* These metrics are not universally accepted.

Based on the LOC/KLOC count of software, many other metrics can be computed:
* Errors/KLOC. Defects/KLOC.

* Pages of documentation/KLOC. Errors/PM.

* Productivity = KLOC/PM (effort is measured in person-months).

Size Oriented Metrics

Advantages of LOC
e Simple to measure
Disadvantage of LOC

* It is defined on the code. For example, it cannot measure the size of the
specification.

It characterizes only one specific view of size, namely length, it takes no account
of functionality or complexity

Bad software design may cause an excessive line of code

It is language dependent

Users cannot easily understand it

Size Oriented Metrics

Halstead's Software Metrics

* According to Halstead "A computer program is an implementation of an
algorithm considered to be a collection of tokens which can be classified as either
operators or operands."

Token Count

* All software metrics can be defined in terms of these basic symbols. These
symbols are called tokens.

* The basic measures are

nl = count of unique operators.

n2 = count of unique operands.

N1 = count of total occurrences of operators.
N2 = count of total occurrence of operands.

* In terms of the total tokens used, the size of the program can be expressed as N =
N1+ N2.

Size Oriented Metrics

Solution: The list of operators and operands is given in the t

o
[
o
[

Operators Occurrences Operand: Occurrences

nt 4 SOR
- X i
4 n 2
7 =
/ o
= _ =
< £ save 2
for 2 -])
fo & Z Z
- >
= e 2
-
J
retum 2 =
nl=14 N1=53 n2=10 N2=38
= =52 and N?=28 Th P p— eneth N= ot £3.30-01
ere 23 and NZ£=39 € program & = Z2=23+30=3

Size Oriented Metrics

Functional Point (FP) Analysis and objectives

* functional point analysis is to measure and provide the software application
functional size to the client, customer, and the stakeholder on their request.
Further, it is used to measure the software project development along with its
maintenance, consistently throughout the project irrespective of the tools and

the technologies.
Types of FP Attributes

Measurements Parameters Examples

1.Number of External Inputs(El) Input screen and tables

2. Number of External Output (EO) Output screens and reports

3. Number of external inquiries (EQ) Prompts and interrupts.

4. Number of internal files (ILF) Databases and directories

5. Number of external interfaces (EIF) Shared databases and shared routines.

All these parameters are then individually assessed for complexity.

Size Oriented Metrics

ILF : Internal logical files
EIF : External interface

FPAs Functional Units System

Size Oriented Metrics

Example: Compute the function point, productivity, documentation, cost per
function for the following data:

* Number of user inputs = 24

Number of user outputs = 46

Number of inquiries = 8

Number of files = 4

Number of external interfaces = 2
Effort = 36.9 p-m

Technical documents = 265 pages

User documents = 122 pages
Cost = S7744/ month
Various processing complexity factors are: 4, 1,0, 3,3,5,4,4,3,3,2,2,4,5.

Size Oriented Metrics

Solution:
Measurement Parameter Count ‘Weighing factor
1. Number of external inputs (El) 24 * 1 4=96
2. Number of external outputs (EO) 46 x | 4=184
3. Number of external inquiries (EQ) 8 - 6 = 48
4. Number of internal files (ILF) 4 = | 10 =40
5. Number of external interfaces (EIF) Count-total — 2 ® 5=10

378

Sosumofallfi(i—1t014)=4+1+0+3+5+4+4+3+3+2+2+4+5=43

FP = Count-total * [0.65 + 0.01 *3(f))]
= 378 * [0.65 + 0.01 * 43]

= 378 * [0.65 + 0.43]

= 378 * 1.08 = 408

Size Oriented Metrics

Documentation = Pages of documentation/FP
FP 408

Productivity = Effort ~ 369 11 = 387/408 = 0.94
Total pages of documentation = technical document + user document cost 7744
= 265 + 122 = 387pages Cost per function = productivity - 111 =$700

EEE

1. FP is specification based. 1. LOC is an analogy based.

2. FP is language independent. 2. LOC is language dependent.

3. FP is user-oriented. 3. LOC is design-oriented.

4. It is extendible to LOC. 4. It is convertible to FP (backfiring)

Software Metrics - Cyclomatic Complexity

. C¥clomatic complexity is a software metric used to measure the complexity
of a program. It is a quantitative measure of independent paths in the
source code of a software program.

* Cyclomatic complexity can be calculated by using control flow grths or
with respect to functions, modules, methods or classes within a sottware
program.

* McCabe (1976) proposed the cyclomatic number, V (G) of graph theory as
an indicator of software complexity. The cyclomatic number is equal to the
number of linearly independent paths through a program in its graph
representation. For a program control graph G, the cyclomatic number, V
(GB), is given as:

V(G)=E-N+2
V(G)=P+1
 E=The number of edges in graphs G
* N = The number of nodes in graphs G
* P = Number of predicate nodes (node that contains condition)

Software Metrics - Cyclomatic Complexity

Flow graph notation for a program

Flow Graph notation for a program defines several nodes connected through the edges. Below are
Flow diagrams for statements like if-else, While, until and normal sequence of flow.

While
Sequence
If-then-else Until

Complexity can be found in the number of decision points in a program. The decision
points are if, for, for-each, while, do, catch, and case statements in a source code.

Software Metrics - Cyclomatic Complexity

i=0;
n=4; //N-Number of nodes present in the graph

while (i<n-1) do
j=i+1;

while (j<n) do ? N

if A[i]<A[j] then
swap(A[il, Alj]);

end do;

j=j+1; : S

end do;

Software Metrics - Cyclomatic Complexity

Computing mathematically,

V(G)=9-7+2=4

V(G) =3 + 1 =4 (Condition nodes are 1,2 and 3 nodes)
Basis Set — A set of possible execution paths of a program
1,7

«1,2,6,1,7

«1,2,3,45,2,6,1,7

«1,2,3,5,2,6,1,7

Properties of Cyclomatic Complexity

The following are the properties of Cyclomatic complexity:

V (G) is the maximum number of independent paths in the graph
V(G) >=1

G will have one pathifV(G) =1

Minimize complexity to 10

Software Metrics

Complexity Number
1-10
10-20

20-40

>40

Meaning

Structured and well written code
High Testability
Cost and Effort is less

Complex Code
Medium Testability
Cost and effort is Medium

Very complex Code
Low Testability
Cost and Effort are high

Not at all testable
Very high Cost and Effort

Software Metrics

Case Tools For Software Metrics

Many CASE tools (Computer Aided Software Engineering tools) exist for measuring
software. They are either open source or are paid tools. Some of them are listed below:

Analyst4j tool is based on the Eclipse platform and available as a stand-alone Rich Client
Application or as an Eclipse IDE plug-in. It features search, metrics, analyzing quality, and
report generation for Java programs.

CCCC is an open source command-line tool. It analyzes C++ and Java lines and generates
reports on various metrics, including Lines of Code and metrics proposed by Chidamber
& Kemerer and Henry & Kafura.

Chidamber & Kemerer Java Metrics is an open source command-line tool. It calculates
the C&K object-oriented metrics by processing the byte-code of compiled Java.

Dependency Finder is an open source. It is a suite of tools for analyzing compiled Java
code. Its core is a dependency analysis application that extracts dependency graphs and
mines them for useful information. This application comes as a command-line tool, a
Swing-based application, and a web application.

Eclipse Metrics Plug-in 1.3.6 by Frank Sauer is an open source metrics calculation and
dependency analyzer plugin for the Eclipse IDE. It measures various metrics and detects
cycles in package and type dependencies.

Software Risk
Management

Software Risk Management

* Risk Management is the system of identifying addressing and eliminating
risk/problems before they can damage the project.

There are three main classifications of risks which can affect a software
project:

* Project risks: Project risks concern diverse forms of budgetary, schedule,
personnel, resource, and customer-related problems. A vital project risk is
schedule slippage.

* Technical risks: Technical risks concern potential method, implementation,
interfacing, testing, and maintenance issue. It also consists of an
ambiguous specification, incomplete specification, changing specification,
technical uncertainty, and technical obsolescence.

* Business risks: This type of risks contain risks of building an excellent
product that no one need, losing budgetary or personnel commitments,
etc.

Software Risk Management

Other Categories of Risk

1. Known risks: Those risks that can be uncovered after careful
assessment of the project program, the business and technical
environment in which the plan is being developed, and more reliable
data sources (e.g., unrealistic delivery date)

2. Predictable risks: Those risks that are hypothesized from previous
project experience (e.g., past turnover)

3. Unpredictable risks: Those risks that can and do occur, but are
extremely tough to identify in advance.

Principle of Risk Management

* Global Perspective: In this, we review the bigger system description,
design, and implementation. We look at the chance and the impact
the risk is going to have.

* Take a forward-looking view: Consider the threat which may appear
in the future and create future plans for directing the next events.

* Open Communication: This is to allow the free flow of
communications between the client and the team members so that
they have certainty about the risks.

* Integrated management: In this method risk management is made an
integral part of project management.

* Continuous process: In this phase, the risks are tracked continuously
throughout the risk management paradigm.

Risk Management Activities

Risk Management Activities

Risk Assessment: The objective of risk assessment is to divide the risks
in the condition of their loss causing potential.

Risk Identification: The project organizer needs to anticipate the risk in
the project as early as possible so that the impact of risk can be
reduced by making effective risk management planning.

Risk Analysis: During the risk analysis process, you have to consider
every identified risk and make a perception of the probability and
seriousness of that risk.

Risk Management Activities

 Risk Control: It is the process of managing risks to achieve desired
outcomes.

* Risk Leverage: To choose between the various methods of handling
risk, the project plan must consider the amount of controlling the risk
and the corresponding reduction of risk.

* Risk Planning: The risk planning method considers each of the key
risks that have been identified and develop ways to maintain these
risks.

* Risk Monitoring: Risk monitoring is the method king that your
assumption about the product, process, and business risks has not
changed.

Risk Management Planning

* There are three main methods to plan for risk management

* Avoid the risk: This may take several ways such as discussing with the
client to change the requirements to decrease the scope of the work,
giving incentives to the engineers to avoid the risk of human

resources turnover, etc.

* Transfer the risk: This method involves getting the risky element
developed by a third party, buying insurance cover, etc.

* Risk reduction: This means planning method to include the loss due
to risk. For instance, if there is a risk that some key personnel might
leave, new recruitment can be planned.

