

PHYSICS ASSIGNMENT – DETAILED SOLUTIONS

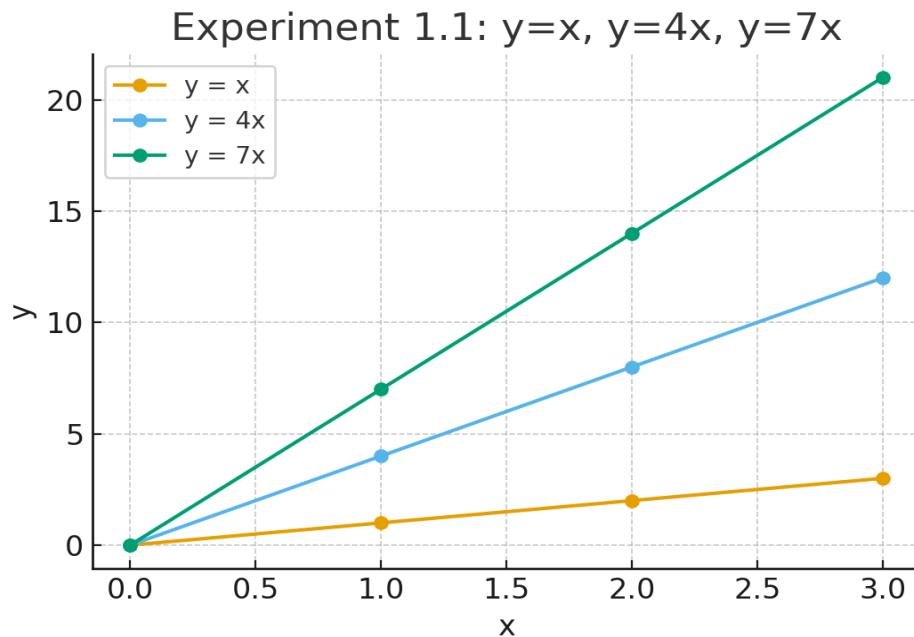
Experiment 1.1 — Question (rewritten):

Plot on the same diagram the following graphs: $y = x$, $y = 4x$, $y = 7x$. Measure the slope in each case.

Solution:

We choose $x = 0, 1, 2, 3$ and compute corresponding y -values. The slopes are the coefficients of x : 1, 4 and 7.

x	$y=x$	$y=4x$	$y=7x$
0	0	0	0
1	1	4	7
2	2	8	14
3	3	12	21



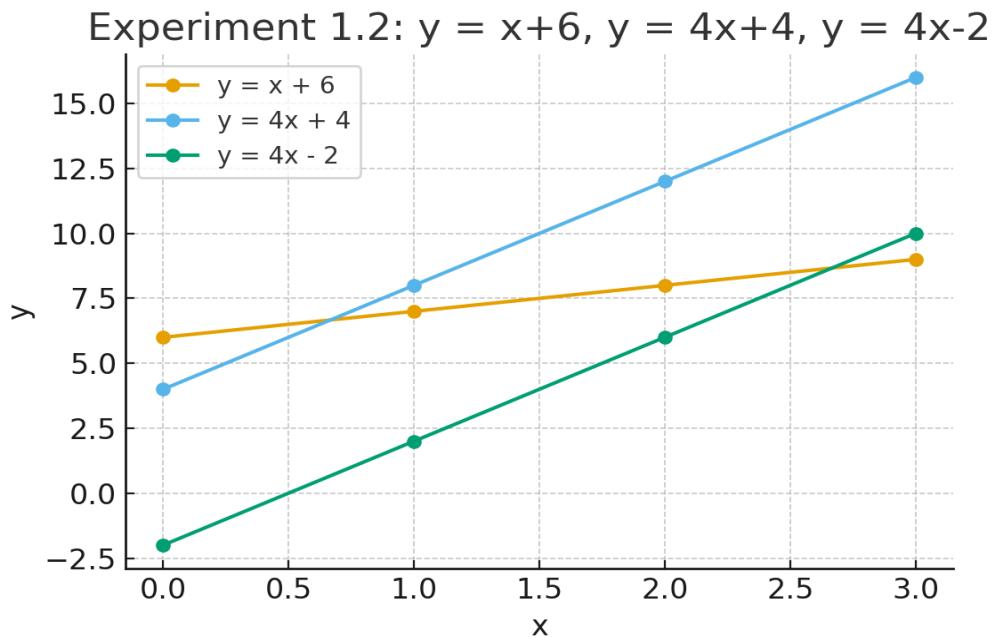
Experiment 1.2 — Question (rewritten):

Plot on the same diagram the following graphs: $y = x + 6$, $y = 4x + 4$, $y = 4x - 2$. Measure their slopes and intercepts.

Solution:

Slopes are coefficients of x : 1 for first, 4 for second and 4 for third. Intercepts (y when $x=0$) are 6, 4 and -2 respectively.

x	$y = x+6$	$y = 4x+4$	$y = 4x-2$
0	6	4	-2
1	7	8	2
2	8	12	6
3	9	16	10



Experiment 1.3 — Question (rewritten):

State what functions of S and T you would plot to obtain straight-line graphs in the following cases: (a) $T = aS^n$; (b) $T = a e^{Sb}$; (c) $T^2 = a(S^2 + b^2)/S$; (d) $T = aS + bS^2$.

Solution (rewritten):

- (a) Take logs: $\log T = \log a + n \log S \rightarrow$ plot $\log T$ vs $\log S$. Slope = n , intercept = $\log a$.
- (b) Take natural log: $\ln T = \ln a + b S \rightarrow$ plot $\ln T$ vs S . Slope = b , intercept = $\ln a$.
- (c) Rearrange: $T^2 = a(S + b^2/S) \rightarrow$ plot T^2 (y-axis) vs $[S + (b^2/S)]$ (x-axis). Slope = a .
- (d) Divide by S : $T/S = a + b S \rightarrow$ plot T/S (y-axis) vs S (x-axis). Slope = b , intercept = a .

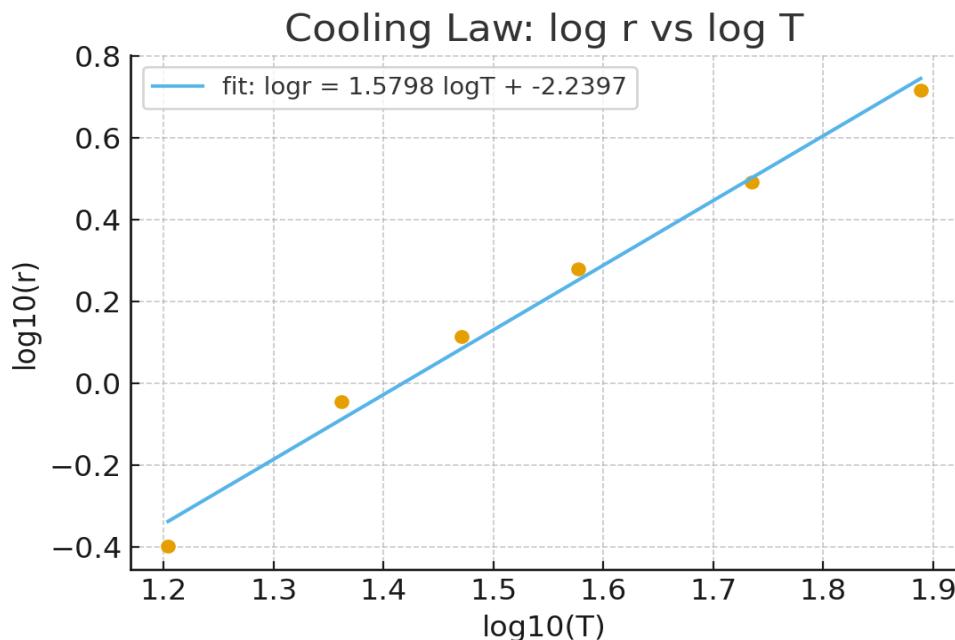
Experiment 1.4 — Question (rewritten):

Assuming the law of cooling is $r = a T^n$, find the values of a and n by plotting a suitable graph. Given data of rate r and temperature excess T .

Solution (rewritten):

Take common logarithm: $\log r = \log a + n \log T$. Plot $\log r$ (y) vs $\log T$ (x). The slope of the straight line is n and the intercept is $\log a$.

T (°C)	r (°C/min)	$\log_{10}(T)$	$\log_{10}(r)$
77.4	5.2	1.8887	0.7160
54.3	3.1	1.7348	0.4914
37.8	1.9	1.5775	0.2788
29.6	1.3	1.4713	0.1139
23.0	0.9	1.3617	-0.0458
16.0	0.4	1.2041	-0.3979



Result of linear fit: $\log r = n \log T + \log a$ with $n = 1.5798$ and $\log_{10}(a) = -2.2397$. Therefore $a = 3.0000$.

Experiment 1.5 — Question (rewritten):

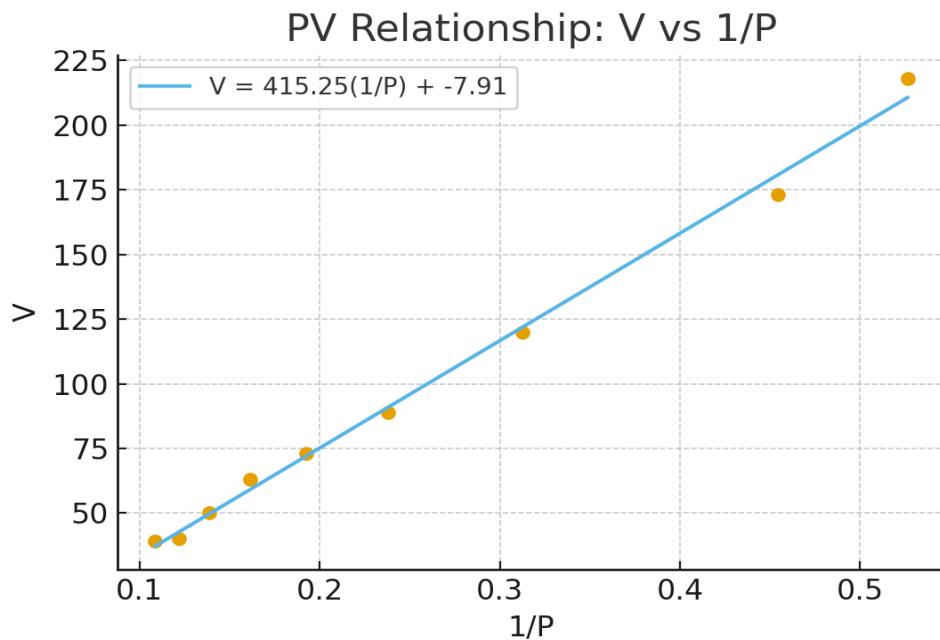
Measurements of two related quantities P and V were made: $P = [1.9, 2.2, 3.2, 4.2, 5.2, 6.2, 7.2, 8.2, 9.2]$ and $V = [218, 173, 120, 89, 73, 63, 50, 40, 39]$. It is known $PV = \text{constant}$. Reduce the results to a straight line graph and find the constant.

Solution (rewritten):

Since $PV = k$, $V = k(1/P)$. So plot V (y) against $1/P$ (x). The slope gives k if the intercept is near zero.

P	V	1/P
1.9	218	0.526316
2.2	173	0.454545
3.2	120	0.312500

4.2	89	0.238095
5.2	73	0.192308
6.2	63	0.161290
7.2	50	0.138889
8.2	40	0.121951
9.2	39	0.108696



Linear fit: $V = 415.247(1/P) + -7.912$. Estimated constant $k \approx 415.247$.

Experiment 1.6 — Question (rewritten):

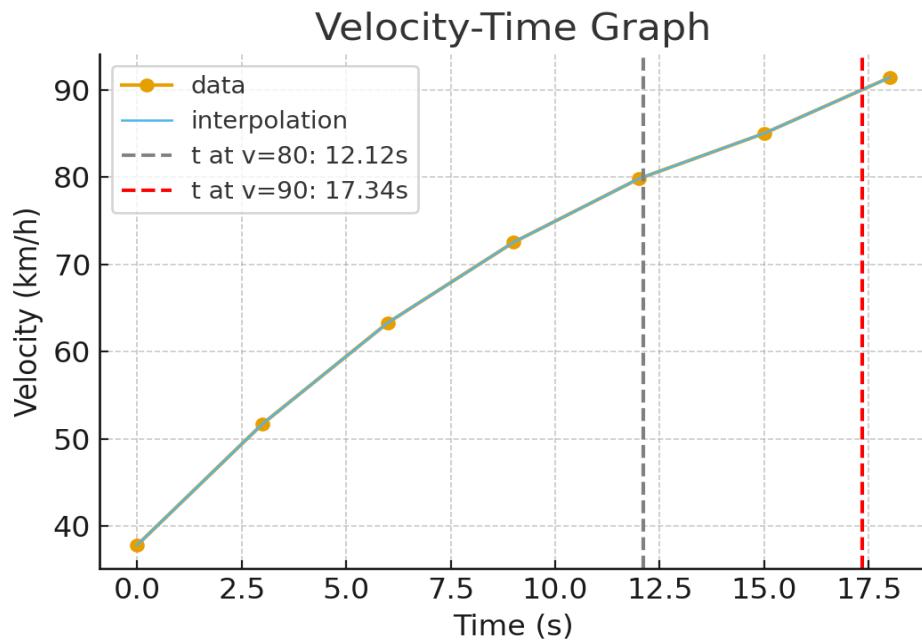
The speedometer readings at the ends of successive intervals of 3 seconds are (km/h): 37.8, 51.7, 63.3, 72.5, 79.8, 85.0, 91.4. Plot the velocity-time graph in convenient units and find from the graph (a) the distance in km covered while the speed increased from 80 to 90 km/h, and (b) the acceleration when speeds are 50, 70 and 90 km/h.

Solution (rewritten):

t (s)	v (km/h)
0	37.8
3	51.7
6	63.3
9	72.5
12	79.8
15	85.0

18

91.4



(a) By linear interpolation on the velocity-time curve we find time at $v=80\text{ km/h}$: $t = 12.12\text{ s}$ and at $v=90\text{ km/h}$: $t = 17.34\text{ s}$.

Time interval $\Delta t = 5.23\text{ s}$. Distance = $\int v dt$ (convert time to hours). Computed distance $\approx 0.1230\text{ km}$.

(b) Acceleration at given speeds:

At $v = 50\text{ km/h} \rightarrow dv/dt = 4.6333\text{ km/h/s}$ which is 1.2870 m/s^2 (rounded). Time corresponding $\approx 2.63\text{ s}$.

At $v = 70\text{ km/h} \rightarrow dv/dt = 3.0667\text{ km/h/s}$ which is 0.8519 m/s^2 (rounded). Time corresponding $\approx 8.18\text{ s}$.

At $v = 90\text{ km/h} \rightarrow dv/dt = 2.1333\text{ km/h/s}$ which is 0.5926 m/s^2 (rounded). Time corresponding $\approx 17.35\text{ s}$.

END OF SOLUTIONS