

# **BINOMIAL EXPANSION, THEOREM APPLICATION AND EXAMPLES**

**Prof. Amos O. POPOOLA and Dr.  
Joseph ADEDEJI**  
**Department of Mathematical Sciences**  
**Osun State University**  
**Osogbo Nigeria.**

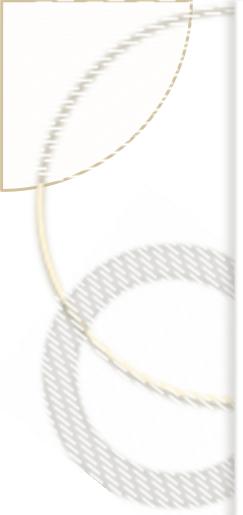
**JANUARY 2026**



Definition: A binomial is an expression of the form  $(a + b)^n$  where  $a, b \in \mathbb{R}$  and  $n \in \mathbb{Z}$ .

- Question: How do we expand a binomial?

There are two ways to it;



# 1. BINOMIAL EXPANSION BY USING PASCAL TRIANGLE

## Preamble:

Blaise Pascal ( 19/06/1623 – 19/08/1662), a French Mathematician and a philosopher observed that a table of coefficient (know as Pascal triangle) to determine the coefficient of the expansion



Suppose we consider the binomial  $(a + b)^n$ ,  
if  $n = 0$  then  $(a + b)^0 = 1$   
 $n=1$  implies  $(a + b)^1 = a + b$   
 $n=2$  gives  $(a + b)^2 = a^2 + 2ab + b^2$   
 $n=3$  gives  $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$

$n = 4$  leads to

$$a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$

and so on.

Obviously, the coefficients of the expansions can be presented as a table in the next slide



## 2. BY USING BINOMIAL THEOREM

For any real numbers  $a, b$  and any natural number  $n$ , the following formula holds true.

$$\begin{aligned}(a + b)^n &= {}^n C_0 a^n + {}^n C_1 a^{n-1} b + \dots + {}^n C_r a^{n-r} b^k + {}^n C_n b^n \\ &= \sum_k {}^n C_k a^{n-k} b^k \\ &= \sum_k \frac{n!}{r!(n-r)!} a^{n-k} b^k\end{aligned}$$

# PROOF

We prove by mathematical Induction

Let  $n = 1$ , then  $(a + b)^1 = a^1 + b^1$  LHS = RHS

Hence, the formula is true .

Assume  $n = k$  is true

That is  $(a + b)^n = \sum_{r=0}^k k c_r a^{k-r} b^r, k < n$

We verify that the formula is true for  $k = n$

- $$\begin{aligned}
 (a+b)^n &= (a+b)(a+b)^{n-1} \\
 &= (a+b) * \sum_{r=0}^{n-1} n-1_{C_r} a^{n-1-r} b^r \\
 &= \sum_{r=0}^{n-1} n-1_{C_r} a^{n-r} b^r + \sum_{r=1}^{n-1} n-1_{C_r} a^{n-r} b^r \\
 &= a^n + \sum_{r=1}^{n-1} (n-1_{C_r} + \\
 &\quad n-1_{C_{r-1}}) a^{n-r} b^r + b^n \\
 &= a^n + \sum_{r=1}^{n-1} n_{C_r} a^{n-r} b^r + b^n \\
 &= \sum_{r=1}^{n-1} n_{C_r} a^{n-r} b^r \quad (\text{since } n_{C_0} = 1, n_{C_n} = 1).
 \end{aligned}$$

Hence the formula holds true for  $k = n$ .

Therefore, by induction the formula holds true for all positive integers  $n$

# Worked Examples

**Example 1:** State the binomial expansion of the theorem, when  $a = 1$  and  $b = x$ .

Solution :

Recall : Binomial theorem

$$(a + b)^n = \sum_{k=0}^n n_{C_k} a^{n-k} b^k$$

If  $a = 1, b = x$  then

$$\begin{aligned} (1 + x)^n &= \sum_{k=0}^n n_{C_k} 1^{n-k} x^k = \sum_{k=0}^n n_{C_k} x^k \\ &= n_{C_0} x^0 + n_{C_1} x^1 + n_{C_2} x^2 + \dots + n_{C_n} x^n \\ &= 1 + n_{C_1} x^1 + n_{C_2} x^2 + \dots + n_{C_n} x^n \end{aligned}$$

## Example 2: Expand $(3 - 2x)^4$

- $(a + b)^n$

$$= n_{C_0} a^n + n_{C_1} a^{n-1} b^1 + n_{C_1} a^{n-2} b^2 + \dots$$
$$+ n_{C_n} b^n$$

$$(3 - 2x)^4 = 3^4 + 4 * 3^3(-2x) + 6 *$$
$$3^2(-2x)^2 + 4 * 3^1(-2x)^3 + (-2x)^4$$
$$(3 - 2x)^4$$
$$= 81 - 216x + 216x - 96x^3 + 16x^4$$

# Binomial Expansion for negative Integers

Recall:

$$(a + b)^n = \sum_{r=0}^n n_{C_r} a^{n-r} b^r$$

Suppose  $a = 1, b = x$  then we have

$$\begin{aligned} (1 + x)^n &= 1 + nx + \frac{n(n - 1)}{2!} x^2 + \dots \\ &+ \frac{n(n - 1) \dots (n - k + 1)}{k!} \cdot x^k + \dots + x^n. \end{aligned}$$

Example 3: Expand  $\frac{1}{(1+x^2)(1-2x)}$  to the ascending power of  $x^2$ .

# Evaluation with binomial expansion

Example 4: Evaluate  $\left(\frac{1}{28}\right)^{\frac{1}{3}}$  to four significant figures.

Solution:

$$\begin{aligned}\left(\frac{1}{28}\right)^{\frac{1}{3}} &= \frac{1}{(28)^{\frac{1}{3}}} = \frac{1}{(1+27)^{\frac{1}{3}}} = (1+27)^{\frac{-1}{3}} = (1+3^3)^{\frac{-1}{3}} \\ &= \left(3^3 \left(1 + \frac{1}{3^3}\right)\right)^{\frac{-1}{3}} = \frac{1}{3} \left(1 + \frac{1}{27}\right)^{\frac{-1}{3}}\end{aligned}$$

By definition ,

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!} x^2 + \dots$$

$$\begin{aligned}\therefore \left(\frac{1}{28}\right)^{\frac{1}{3}} &= \frac{1}{3} \left\{ 1 + \left(\frac{-1}{3}\right) \left(\frac{1}{27}\right) + \frac{\frac{-1}{3} \left(\frac{-1}{3} - 1\right)}{2!} \left(\frac{1}{27}\right)^2 + \dots \right\} \\ &= \frac{1}{3} \left\{ 1 - \frac{1}{81} + \frac{2}{3^8} - \dots \right\} = \frac{1}{3} \{0.9879\} \simeq 0.3293\end{aligned}$$

# Largest Coefficient and Greatest Coefficient

The general term (*rth term*) of the binomial expansion of  $(a + b)^n$  is given by:

$$T_r = n C_r a^r b^{n-r} \dots (1)$$

Suppose the binomial expression is of the form  $(ax + by)^n$  then the *rth term* becomes:

$$T_r = n C_r (ax)^r (by)^{n-r} \dots (2)$$

The Coefficient of  $x^r$  in (2) above is

$$K_r = n C_r a^r (by)^{n-r} \dots (3)$$

The  $(r + 1)$ th term gives

$$K_{r+1} = n C_{r+1} a^{r+1} (by)^{n-r-1} \dots (4)$$

Algebraically:  $k_{r+1} \geq k_r \dots (5)$

and  $k_r \leq k_{r+1} \dots (6)$

Suppose the largest  $r$  for which:

$$\left| \frac{k_r}{k_{r+1}} \right| \leq 1 \text{ or } \left| \frac{k_{r+1}}{k_r} \right| \geq 1 \dots (7)$$

If  $r = m$ , then the largest coefficient is  $k_{m+1}$ .

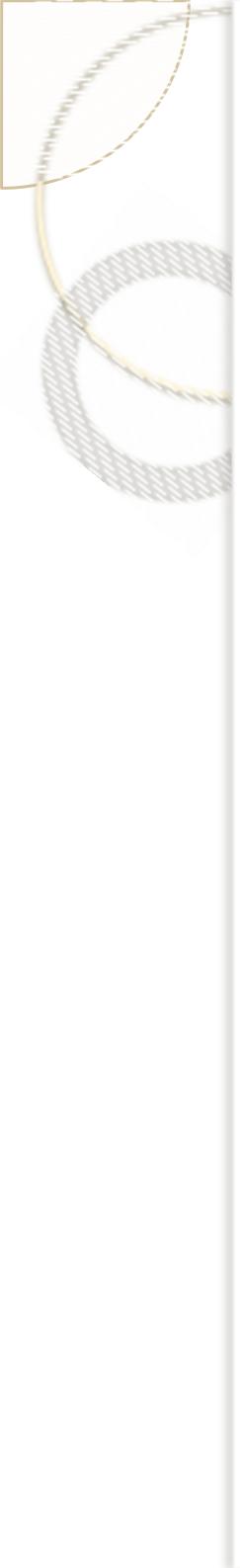
# Worked Examples

- 1) Expand  $(2x + 1)^6$  and obtain the largest coefficient.
- 2) Obtain the largest equation of the expansion:
  - $(3 + 4x)^5$
  - $\left(7 + \frac{3}{2}x\right)^3$
- 3) Expand (up to  $x^2$ ):
  - $(3 + 4x)^{-2}(3 + 2x)$
  - $$\frac{3x-4}{(x+1)^2(x-2)}$$



# Tutorial Questions

1. Show that  $(1 - 2x^3)^7 = 1 - 14x^3 + 84x^6 - 280x^9 + 560x^{12} - 672x^{15} + 448x^{18} - 128x^{21}$ .
2. Show that  $(x - 1/x)^5 = x^5 - 5x^3 + 10x - \frac{10}{x} + \frac{5}{x^3} - \frac{1}{x^5}$ .
3. Obtain the coefficient of  $x^4$  in the expansion of  $(2 - 3x)^9$ .
4. Evaluate  $(1.03)^{10}$  to 3 decimal places.
5. Expand  $(1 + y)^{10}$  in ascending powers of  $y$  up to  $y^4$ .
6. Use the binomial expansion to evaluate  $\frac{1}{\sqrt{17}}$  to four decimal places



MATHEMATICAL INDUCTION

Principle of  
Mathematical  
Induction



# Definition

Mathematical Induction (MI) is a technique or method of proving a statement/proposition that is asserted about every natural number.

MI is therefore, a tools/ technique for proving statement which in reality maybe too difficult to establish. It could be used to prove equations, theorems, formulas, inequalities and for solving problems in geometry.





For instance, let a proposition  $T_n$  be

$$1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}$$

for  $n = 1$ ;  $1 = \frac{1(1+1)}{2} = \frac{1*2}{2} = 1$ ,

$$LHS = 1 = RHS$$

for  $n = 2$ ;  $1 + 2 = \frac{2(2+1)}{2} = \frac{2*3}{2} = 3$ ,

$$LHS = 3 = RHS$$

for  $n = 3$ ;  $1 + 2 + 3 = \frac{3(3+1)}{2} = \frac{3*4}{2} = 6$ ,

$$LHS = 6 = RHS$$

⋮

for  $n = 100$ ;  $1 + 2 + 3 + \cdots + 100 = \frac{100(100+1)}{2} = \frac{100*101}{2}$ ,

$$LHS = RHS$$

In general,

$$1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}$$



# Principle of Mathematical Induction

To use MI to prove a proposition, four major steps are involved:

Let  $T_n$  be the proposition,  $n \in \mathbb{N}$

Step 1: We show that for  $n = 1$ ,  $T_1$  is either true or false.

Step 2: We assume true for  $T_k$  if  $T_1$  is true. Otherwise, we conclude  $T_k$  is false. That is, for  $n = k$ , we assume that  $T_k$  is true provided we already established that  $T_1$  is true.

Step 3: We show that for  $n = k + 1$ ,  $T_{k+1}$  is either true or false.

Step 4: Conclusion

We conclude that since  $T_1$  is either true or false,  $T_k$  is assumed true, and  $T_{k+1}$  is either true/false. Then the proposition  $T_n$  is either true/ false for any natural number  $n \in \mathbb{N}$ .

# Worked Example

Prove that for any natural number  $n \in \mathbb{N}$

$$1 + 2 + 3 + \dots + n = \frac{n(n + 1)}{2}$$

Proof:

Let  $T_n$  be the proposition that

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

Step 1: We show that  $T_1$  is either true or false  $LHS = 1, RHS = \frac{1(1+1)}{2} = 1$

$LHS = RHS$ , hence,  $T_1$  is true.

Step 2: We assume that at  $n = k$ ,  $T_k$  is true,

That is,

$$1 + 2 + 3 + \dots + k = \frac{k(k + 1)}{2} \dots \dots \dots (*)$$

Step 3: We show that  $T_{k+1}$  is either true or false, that is, at  $n = k + 1$

$$1 + 2 + 3 + \dots + k + 1 = \frac{(k + 1)(k + 2)}{2} \dots \dots \dots (**)$$

Substituting (\*) into (\*\*), we obtain

$$\begin{aligned} \frac{k(k+1)}{2} + k + 1 &= \frac{(k+1)(k+2)}{2} \\ LHS &= \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2} \\ &= \frac{(k+1)(k+2)}{2} = RHS \end{aligned}$$

Hence  $LHS = RHS$  then the statement is true for  $n = k + 1$  That is,  $T_{k+1}$  is true.

Step 4: (Conclusion)

Since  $T_1$  is true,  $T_k$  is assumed true, and  $T_{k+1}$  is true, then the proposition  $T_n$  is true for all natural numbers

Hence,

$$1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2} \quad n \in \mathbb{N}$$

# Tutorial Questions

Prove that:

1.  $1 + 3 + 5 + \cdots + (2n + 1) = n^2, n \in \mathbb{N}$

2.  $n! \leq n^n$  for any integer  $n \geq 1$

3.  $(ab)^n = a^n b^n, n \in \mathbb{N}, a, b \in \mathbb{R}$ .

4.  $1^3 + 2^3 + 3^3 + \cdots + n^3 = \frac{n^2(n+1)^2}{4},$

$$n \in \mathbb{N}$$

5.  $\frac{1}{1*3} + \frac{1}{3*5} + \frac{1}{5*7} + \dots + \frac{1}{(2n-1)(2n+1)},$

$$n \in \mathbb{N}$$



8.  $1^2 + 2^2 + 3^2 + \cdots + n^2 = \frac{n}{6}(n+1)(2n+1), \quad n \in \mathbb{N}$

Show that:

6.  $2 + 4 + 6 + \cdots + 2n = n(n+1), \quad n \in \mathbb{N}$

7.  $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \cdots + \frac{(-1)^{n-1}}{n}$  is always positive.

8.  $a + (a+d) + (a+2d) + (a+3d) + \cdots + (a+(n-1)d) = \frac{n}{2}[2a + (n-1)d].$

9.  $7^{2n} - 1$  is always a multiple of 8.