
ARRAY
An array is a fundamental data structure
used in programming to store multiple

values of the same data type under a single
variable name. Each value in an array is

accessed using an index (position number).
Arrays help programmers organize data
efficiently and reduce the need to create

many separate variables.An array is a
collection of elements of the same data

type stored in contiguous memory
locations, and each element can be

accessed using an index.

CONTINUATION

•

•

•

•

•

•

•

•

Example (conceptual):

Instead of writing:score1, score2, score3, score4

We write:scores[]
Characteristics of Arrays

�All elements must be of the same data type (e.g., all integers).

�Stored in contiguous memory locations.

�Each element has a unique index.

�Indexing usually starts from 0 in most programming languages.

�Arrays have a fixed size once declared (in many languages).

Types of Arrays One-Dimensional Array
(1D Array)
• .

A one-dimensional array stores elements in a single row or list.

Example: int age[5] = {10, 12, 14, 16, 18};
Representation:

Index 0 1 2 3 4

Value 10 12 14 16 18

Two-Dimensional Array

Two-Dimensional Array (2D Array)A two-dimensional array stores
data in rows and columns (like a table or matrix).Example:

int marks[2][3] = {

 {70, 80, 90},

 {60, 75, 85}

};

Multi-Dimensional Array

• .

Representation:

Col 0 Col 1 Col 2

Row 0 70 80 90
Row 1 60 75 85

Multi-Dimensional Array :Arrays with more than two dimensions, commonly used in
advanced applications like scientific computing and image processing.

Declaration of Arrays

The general format for declaring an array is:

DataType ArrayName[Size]; e.g

int numbers[10];
float prices[5];
char name[20];

Array operations

1.Traversing an Array

Accessing each element of the array one by one.

Example (Python):

arr = [10, 20, 30, 40]

for i in arr:

 print(i)

Use: Displaying or processing all elements.

2. Insertion

Adding a new element to the array at a specific position. Insertion can be
done at the beginning, At the end, At a specific index

CONTN

Example:

arr = [10, 20, 30]

arr.insert(1, 15) # Insert at index 1print(arr)

Deletion

3. Deletion

Removing an element from the array.

Example:

arr = [10, 20, 30, 40]

arr.remove(30)print(arr)

CONTN

Searching

Finding the position of a particular element.

(a) Linear Search

arr = [5, 7, 9, 11]

key = 9

for i in range(len(arr)):

 if arr[i] == key:

 print("Found at index", i)

CONTN

5. Sorting

Arranging elements in ascending or descending order.

Example:

arr = [4, 2, 9, 1]

arr.sort()print(arr)

6. Merging

Combining two arrays into one.

Example:

arr1 = [1, 2, 3]

arr2 = [4, 5]

arr3 = arr1 + arr2print(arr3)

STRING

•

•

•

•

•

A string is a data type used to store a sequence of characters such as
letters, digits, symbols, and spaces. Strings are commonly used to store
names, words, sentences, and text data in computer programs.A string is an
array or collection of characters treated as a single data item. Examples of
strings: "Hello", "Computer Science", "A123", "My name is Ismail"

Characteristics of Strings

�A string is made up of characters.

�Characters are stored in contiguous memory locations.

�Strings have a length (number of characters).

�In many languages, strings are arrays of characters.

Strings usually end with a null character \0 (in languages like C

• . Example: "DATA"

Index 0 1 2 3

Character D A T A

Declaration of Strings

Declaration of Strings

1.In C Language

char name[10];

char course[] = "Computer";

2.In Python

name = "Computer Science"

In Java

String name = "Technology";

Accessing String Characters

Accessing String Characters

Characters in a string are accessed using index values.

�name[0] // First character

�name[3] // Fourth character

Common String Operations
Common String Operations

1.String Length

Finding the number of characters in a string.

C: strlen()

Python: len()

Java: length()

example : Python: len("Hello") → 5

2.String Concatenation

Joining two or more strings together.

C: strcat(str1, str2)

Python: str1 + str2

Java: str1.concat(str2)

example :"Hello" + " World" → "Hello World"

String Searching
.String Searching

Find the position of a character or substring.

C: strchr() or strstr()

Python: str.find()

Java: indexOf()

Example:"Computer".find("p") → 3

4, String Slicing / Substring

Extract part of a string.

Python: str[start:end]

Java: str.substring(start, end)

Example:

"Programming"[0:6] → "Progra"

Removing White Spaces

Trim spaces at the start or end of a string.

Python: str.strip()

Java: str.trim()

Searching

•

Searching

Searching is the process of finding whether a particular element
exists in a data structure and, if it exists, determining its position.

Types of Searching

 Linear Search (Sequential Search)

�The simplest search method.

�Checks each element one by one until the target is found or the
list ends.

Works on unsorted or sorted data

Algorithm for searching

Algorithm (Pseudo-code):

for i = 0 to n-1:

 if arr[i] == key:

 return i // element found

return -1 // element not found

Example: Search for 7 in [3, 5, 7, 9] → Found at index 2

arr = [3, 5, 7, 9]

key = 7

for i in range(len(arr)):

 if arr[i] == key:

 print("7 found at index", i)

 break

else:

 print("7 not found")

Pros: Simple to implement.

Cons: Slow for large lists.

Binary Search
Binary Search

�Works only on sorted lists.

�Repeatedly divides the list in half and checks the middle element.

Algorithm (Pseudo-code):

low = 0

high = n-1

while low <= high:

 mid = (low + high) / 2

 if arr[mid] == key:

 return mid

 else if arr[mid] < key:

 low = mid + 1

 else:

 high = mid - 1

return -1

EXAMPLE
Example: Search for 7 in [2, 4, 6, 7, 9] → Found at index 3

arr = [2, 4, 6, 7, 9]

key = 7

low = 0

high = len(arr) - 1

while low <= high:

 mid = (low + high) // 2

 if arr[mid] == key:

 print("7 is found at index", mid)

 break

 elif arr[mid] < key:

 low = mid + 1

 else:

 high = mid - 1

else:

 print("7 is not found")

Output

7 is found at index 3

PROS AND CONS OF BINARY SEARCH

•

•

Pros: Much faster than linear search for
large lists.
Cons: List must be sorted.

Sorting:

Sorting: Sorting is the process of
arranging elements in a list in ascending
(smallest to largest) or descending
(largest to smallest) order.

Types of Sorting Algorithms

•

•

•

•

1 Bubble Sort

This is a simple comparison based sorting algorithm used to arrange
elements in a List or array in ascending or Descending order. It works by
repeatedly comparing adjacent element and swapping them if they are in
the wrong order. It is called burble sort because larger element bubble up
to the end of the list after each pass. Process continues until the list is
sorted.

Pros:

�Easy to understand

�Good for small Dataset

Cons:

�Slow for large Datasets

�Not efficient compared to other sorting Algorithms

Selection Sort

•

•

•

•

Finds the smallest element and swaps it with the first element.Then
finds the second smallest and swaps with the second element, and so
on. The idea is to repeatedly select the smallest (or largest) element
from the unsorted part of the array and place it in correct position.

Pros:

�Simple and easy to implement.

�Performs faster swaps than burble sor

Cons:

�Not efficient for large Datasets

�Not suitable for real time Applicattion

Insertion Sort

•

•

•

•

Builds a sorted list one element at a time. Inserts each new
element into its correct position in the already sorted part.

Pros:

�Efficient for small Datasets and nearly sorted Datasets

�Simple and easy to understand.

Cons:

�Slower for large random lists.

�Inefficient for large Dataset.

SIMPLE RECURSIVE ALGORITHMS IN OOP

•

•

Recursion is a programming technique where a function calls
itself to solve a problem. It is widely used in OOP languages like
Java, Python, C++, etc.

Key idea: Solve a large problem by breaking it into smaller similar
subproblems.

Characteristics of Recursive Algorithms

�Base Case: The stopping condition to prevent infinite recursion.

�Recursive Case: Part of the function that calls itself.

 Must eventually reach the base case.

Examples of Simple Recursive
Algorithms in OOP
Example 1: Factorial of a Number

1. Factorial of a Number

Factorial of n = n × (n-1) × (n-2) × ... × 1

def factorial(n):

 if n == 0: # base case

 return 1

 else:

 return n * factorial(n - 1)

print(factorial(5))

2.Countdown Example
Simple recursion example.

def countdown(n):

 if n == 0:

 print("Done")

 else:

 print(n)

 countdown(n - 1)

countdown(5)

